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2.11 Figure 1. Simplified predictive processing model demonstrating the predic-

tive processing hypothesis for the perception of melodies. Electroencephalog-

raphy (EEG) signal recorded during monophonic music listening was hypoth-

esized to reflect the linear combination of a sensory evoked-response (S) and a

neural prediction signal (P). In line with the predictive processing framework,

we modeled the EEG signal as a combination of the distinct components S and

P; Specifically, as the subtraction S-P or, equivalently, S + (-P). Having defined

P as a signal reflecting the attempt of our brain to predict the sensory stimulus,

we posited P to emulate S (with |S|>|P|) and to have larger magnitude with

stronger expectations (the expectation strengths are not included in this figure,

for simplicity). As such, the S-P signal would become “-P” when a prediction is

possible but no sensory stimulus is present (S=0), producing an overall EEG sig-

nal with inverse polarity compared with the response to a note. In other words,

EEG responses with opposite polarities were expected for events with and with-

out an input sound (see polarities for events marked in black and green in the

figure). After selecting silent events as the instants where a note was plausible

but did not occur (based on IDyOM, see Methods), the existence and precise

dynamics of the prediction signal were assessed: 1) By comparing the responses

to silent events during melody listening, where P could be measured in isolation

as S=0; 2) By studying the neural processing of music during imagery, where P

could be isolated as S=0 for both notes and silent-events; and 3) By separating

S and P with a component analysis method. . . . . . . . . . . . . . . . . . . . . . . . 38
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2.12 Figure 2. Robust cortical response to silence during music listening. (A)

Experiment 1 setup. EEG signal was recorded as participants listened to mono-

phonic piano music. Univariate vectors were defined that mark with value 1 the

onset of either notes (NT) or silent events (SIL). A system identification proce-

dure based on lagged linear regression was performed between each vector and

the neural signal that minimizes the EEG prediction error. (B) The regression

weights represent the temporal response function (TRF) describing the coupling

of the EEG signal with notes (TRFNT) and silent events (TRFSIL). TRFs at the rep-

resentative channel FCz are shown (top), revealing significant differences (FDR

corrected Wilcoxon test, *q < 0.001) between the neural signature of note and

silent-event due to inverted polarities, as clarified by the topographies of the TRF

components (bottom). (C,D) The overall distribution of time-intervals between

notes and between silent-event and the immediately preceding note. The y-axis

indicates the number of occurrences for a given bin of time intervals when con-

sidering all trials. The data shows that a large number of silent events occurred

less than 200ms after a note, implying that, in experiment 1, TRFSIL could have

potentially been affected by the late response to the previous note. (E) The anal-

ysis from panel B was re-run by using multivariate TRF models i.e., considering

note and silent-event vectors simultaneously with multivariate lagged regression

to account for possible interaction between the two. The figure shows the regres-

sion weights corresponding to the two regressors at the selected channel FCz,

while the topographies show the regression weights. As for the univariate TRF

result, significant differences were found between note and silent-event TRFs

(FDR corrected Wilcoxon test, *q < 0.001). TRFNT showed qualitatively more

pronounced early TRF components. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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2.13 Figure 3. Comparable cortical encoding of music silence and note during

imagery. (A,B) EEG signal were recorded as participants listened to and imag-

ined piano melodies (Experiment 2). A vibrotactile metronome placed on the

left ankle allowed for the precise execution of the auditory imagery task. (C)

TRFs at the channel FCz (left) and topographies of the TRF at selected time-

latencies (right) are reported for the listening condition. Thick lines indicate

TRF weights that are larger than the baseline at latency zero (FDR corrected

Wilcoxon sign-rank test, q < 0.01). Black asterisks indicate significant differ-

ences between NT and SIL (FDR corrected Wilcoxon sign-rank test, q < 0.01).

(D) The TRF results is reported for the imagery condition, showing a significant

component centered at ~300 ms for both note and silent events with, as hy-

pothesized, no significant difference between NT and SIL, which had the same

polarity in this case. (E,F) The overall distribution of time intervals between

notes and between silent events and the immediately preceding note in Experi-

ment 2. The y-axis indicates the number of occurrences for a given bin of time

intervals when considering all trials. (G) TRFs were fit for the listening and im-

agery conditions using a univariate stimulus regressor marking the metronome

with unit impulses (and zero at all other time points). TRFs are shown at the

EEG channel FCz. Topographies depicting the TRF weights at all channels are

also shown at the peak of the dominant TRF component. . . . . . . . . . . . . . . 52

2.14 Figure 4. Disentangling sensory and prediction neural signals with unsu-

pervised correlation analysis. Multiway canonical correlation analysis (MCCA)
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2.15 Figure 5. Notes and silence expectation encoding in low-frequency EEG.

A multivariate TRF analysis was conducted to identify the linear transforma-

tion that best predicts low-frequency EEG data (0.1-30 Hz) based on a three-

dimensional stimulus representation indicating, for either note or silent-events:

event onset-time, entropy at that position, and surprise of that event. (A) EEG

prediction correlations of the TRF using the note or silence expectation values

estimated with IDyOM are compared to a null-model where the EEG prediction

correlations were obtained with a TRF that was fit after a random shuffling of the

expectation values (event onset-times were preserved). Results averaged across

all electrodes are reported for both listening and imagery conditions. Each dot

indicates the result for a single subject. Significant differences were measured

for notes and silent events in both conditions (Permutation test, ***p < 10-4).

(B) Topographical maps indicating the EEG prediction correlation increase (ex-

pectation minus null-model) at each EEG channel. . . . . . . . . . . . . . . . . . . 56

2.16 Figure 6. Computational model for how predictions influence neural signals

corresponding to auditory listening and imagery. Auditory inputs elicit bottom-

up sensory responses (S) through the auditory cortex (ACX). A prediction model

generates a top-down prediction signal (P) that is more similar to S for more
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when S is fully predictable (Margulis, 2014). When a sound is imagined, S = 0

and therefore sur -P, as for our hypothesis in Figure 1. . . . . . . . . . . . . . . . . . 57

2.17 Schematic depicts the four types of recordings from all electrodes which are ex-

pected in each subject: Miming (M) responses are when a subject articulates the

speech without any sound; Listening (L) responses are from the subject listening

passively to the speech; Speaking (S) signals are recorded while subject articu-

lates audibly the speech; Noise (N) are recordings of the background noise on

the electrodes in silence. The schematic illustrates the postulated forward and

inverse projections between the auditory and motor areas. . . . . . . . . . . . . . . 63

xx
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sorimotor interactions. It emphasizes the relative contributions of the inverse

(Encoder) and forward (Decoder) projections between the auditory and motor

areas. The overall network resembles a classic auto-encoder network that maps

the auditory cortex activity onto itself through a hidden layer (motor regions),

but with an additional non-neural motor-plant (vocal-tract) pathway that shares

with the forward projection its motor input and auditory output. Two sources of
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ABSTRACT

This PhD thesis explores musical perception through a multidisciplinary approach in the

fields of neuroscience, psychology, and computer science, analyzing the link between music and

culture. Experimental paradigms employing computational models of music, neuroimaging

in humans and animals, electrophysiological recordings in ferrets, and behavioral analysis of

human psychacoustics, have helped uncover the neural bases of many fascinating aspects of

the musical experience.

We first explored experimentally the brain’s ability to predict musical events while listening

to extended melodic sequences. Recordings of these predictions correlated with expectations

generated by computational models, highlighting the brain’s ability to anticipate music. New

innovative models of musical expectation were then formulated as a result; they include IDy-

OMpy and MusiREX. For example, IDyOMpy was used to demonstrate the strong relationship

between brain responses during musical imagery and during natural moments of silence ver-

sus model-estimated probabilities, thus emphasizing the predictive nature of neural activity.

Sensory-motor interactions were also explored through computational models inspired by the

Mirror Network architecture, shedding light on their role in sensory-motor learning.

Musical enculturation in neural models of musical expectation was examined through var-

ious techniques, including human electroencephalography (EEG), functional magnetic reso-

nance imaging (fMRI), and behavioral recordings in humans as well as electrocorticography

(ECoG), and functional ultrasound imaging (FUS) in a ferret model. We demonstrated that

passive exposure to unfamiliar music enhanced the predictive abilities and pleasure, aligning

with the so-called Wundt effect, a key element of contemporary literature on musical pleasure.

In summary, this thesis presents a framework where musical expectations are learned through

passive exposure and subsequently shape music enjoyment and individual preferences. Viewed

from this perspective, these global mechanisms can also be interpreted as an evolutionary pro-

cess for social bonding.

Finally, we expanded the investigation by considering the genetic and sociocultural factors

impacting musical preferences. Our aim was to explore hereditary and non-shared environ-

mental influences through a genetic study based on twin siblings. Cross-cultural investigations

in Paris and Rome also provided sociocultural insights into musical preferences, contributing

to a refined model of musical preferences including, social affiliation, genetics, and statistical

passive learning.

In conclusion, this thesis advances our understanding of the neural mechanisms of musical

perception, explores the impact of musical enculturation on musical enjoyment, and introduces
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genetic and socio-cultural factors to understand their role in shaping musical preferences. It

contributes to the neuroscience of music by uncovering the interplay between predictions, cul-

ture, and the musical experience.
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RÉSUMÉ SUBSTENTIEL

Cette thèse de doctorat explore la perception musicale à travers une approche multidis-

ciplinaire dans les domaines des neurosciences, de la psychologie et de l’informatique, en

analysant le lien entre musique et culture. Des paradigmes expérimentaux utilisant des modèles

informatiques de la musique, la neuro-imagerie chez l’homme et l’animal, des enregistrements

électrophysiologiques chez le furet et l’analyse comportementale de la psychoacoustique hu-

maine, ont permis de découvrir les bases neurales de nombreux aspects de l’expérience musi-

cale.

J’essaie d’abord de démontrer que le cerveau emet des prédictions sur les notes de musique

à venir dans le contexte de l’écoute de mélodies à travers deux expériences différentes. La pre-

mière série d’expériences consiste en des enregistrements de musiciens professionnels écoutant

et imaginant des chorals de Bach. Comme première observation de l’existence de prédic-

tions musicales dans le cerveau, je montre que les réponses corticales enregistrées par elec-

trocephalographie (EEG) présentent des amplitudes différentes pour différentes notes et que

ces différences peuvent être expliquées par leurs probabilités calculées par un modèle statis-

tique de la musique. Dans la seconde étude, j’ai démontré avec des collègues que les moments

de silence naturel pendant ces chorales contiennent des réponses cérébrales qui ont la signa-

ture typique des signaux de prédiction (polarité négative) et que ces réponses ont également

leur amplitude corrélée avec la probabilité de leurs attentes estimées.

Deux nouvelles versions de modèles informatiques d’attente musicale sont ensuite présen-

tées. Elles sont basées sur les travaux de Marcus Pearce (suivant le cadre d’IDyOM(M. T. Pearce,

2005)), le modèle statistique de la musique le plus utilisé (plus de 300 études le citent), mais

présentent des améliorations de mise en œuvre et de nouvelles fonctionnalités qui ont déjà été

utilisées dans mes études. IDyOMpy est une formulation Python d’IDyOM qui, grâce à sa struc-

ture de code modulaire, permet des modifications faciles et l’ajout de nouvelles fonctionnalités.

Par exemple, il a été utilisé pour calculer les probabilités d’entendre une note dans chaque mo-

ment de silence au sein de morceaux de musique naturels. Cette implémentation présente

également une nouvelle façon de fusionner les statistiques recueillies à différentes échelles

temporelles et permet de meilleures performances basées sur différentes mesures. MusiREX

est une implémentation du modèle D-REX(Skerritt-Davis & Elhilali, 2018; 2019), formulé à

l’origine dans le laboratoire LCAP de l’Université John Hopkins. Cette nouvelle version suit

désormais la structure du modèle IDyOM (long et court terme, validation croisée/train-test,

dépendances temporelles fixes) et travaille directement à partir de fichiers midi. Elle permet

d’obtenir de meilleures performances que les deux précédentes implémentations d’IDyOM sur
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différentes mesures et permet également d’utiliser des enregistrements audio au lieu de fichiers

midi uniquement symboliques. Ces deux nouveaux modèles sont très efficaces pour rendre

compte des réponses du cerveau humain. Par exemple, nous avons utilisé IDyOMpy pour mon-

trer, pour la première fois, que les réponses corticales aux notes imaginées étaient corrélées

avec la probabilité estimée par le modèle et nous avons utilisé ces corrélations pour constru-

ire un classificateur capable de détecter quelle chorale avait été imaginée par les participants.

En outre, nous avons montré que la signature topographique de ces réponses présentait une

polarité inverse par rapport aux réponses pendant l’écoute musicale de la même musique, tout

comme pendant les moments de silence. Ces deux nouveaux résultats démontrent la nature

prédictive de l’imagerie musicale dans le cerveau et offrent de nouvelles hypothèses sur la façon

dont nous mémorisons le contenu musical. Une explication de ce phénomène est fournie par

le cadre de traitement prédictif (Predictive Processing Framework) (Clark, 2013; K. J. Fris-

ton et al., 2010). Ce cadre s’articule autour de l’idée que le cerveau développe un modèle du

monde qui est utilisé pour prédire les entrées sensorielles et qui est continuellement mis à jour

en comparant les stimuli prédits et réels (Barlow et al., 1961). Ainsi, la perception émerge

de l’interaction entre les entrées sensorielles (S) et les attentes ou prédictions internes (P). La

comparaison entre les entrées sensorielles et leur prédiction produit une erreur de prédiction

(PE, δ = S-P) qui, entre autres fonctions, permet la mise à jour du modèle de prédiction in-

terne lui-même (Näätänen et al., 2007). Par conséquent, la perception est un processus actif

par lequel notre cerveau surveille en permanence les statistiques des informations sensorielles

entrantes afin (i) d’apprendre et de mettre à jour un modèle interne des régularités du monde

qui nous entoure ; et (ii) de prédire, sur la base de ce modèle, les entrées sensorielles entrantes

afin de moduler leur encodage neuronal et de faciliter leur perception dans des conditions dif-

ficiles, par exemple lors de la restauration d’objets manquants ou bruyants.par exemple lors

de la restauration de parties manquantes ou bruyantes d’un stimulus (Leonard et al., 2016) ou

en biaisant la perception d’images ou de sons ambigus (Brainard & Hurlbert, 2015; Pressnitzer

et al., 2018).

La perception musicale, en particulier, offre un paradigme éclairant pour explorer les mises

en œuvre des principes de traitement prédictif en raison de ses régularités structurelles, tem-

porelles, timbrales, mélodiques ou harmoniques (Koelsch et al., 2019; M. A. Rohrmeier &

Koelsch, 2012). Ainsi, contrairement au traitement des entrées sensorielles aléatoires et im-

prévisibles, le signal musical hautement structuré produit des prédictions concurrentes sur les

événements à venir. Plus précisément, la régularité temporelle de la musique qui est présente

à différentes échelles de temps conduit à des modèles récurrents de mélodie. Ainsi, la musique

peut présenter des régularités dues à la répétition du même motif ainsi que des régularités

qui peuvent être imprévisibles sur la base du seul contexte proximal, mais qui sont néanmoins

conformes aux règles d’un style musical ou d’une culture particulière (Margulis, 2014).
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Des preuves comportementales d’un traitement prédictif pendant l’écoute de la musique ont

déjà été observées dans le passé en réponse à des stimuli artificiels contenant des événements

plus ou moins attendus (par exemple, un accord de dominante se résolvant soit sur une tonique,

soit sur une sixte napolitaine). Dans la conception expérimentale de l’amorçage, lorsqu’on de-

mande aux auditeurs de détecter des écarts de timbre, des temps de réponse (TR) plus rapides

ont été associés à des stimuli musicaux plus attendus (J. J. Bharucha & Stoeckig, 1987; Bigand

& Pineau, 1997; Tillmann et al., 2006; 2007). Il a également été démontré que la précision des

performances s’améliorait avec la prévisibilité des notes (J. J. Bharucha & Stoeckig, 1987). Il

est important de noter que les auditeurs sans formation musicale formelle ont montré des effets

d’amorçage similaires à ceux des musiciens formés (J. J. Bharucha & Stoeckig, 1986; Bigand

& Pineau, 1997; Tillmann et al., 2006), ce qui confirme l’hypothèse selon laquelle le traite-

ment prédictif pendant l’écoute de la musique ne nécessite pas de formation musicale formelle

(Tillmann, Bharucha, & Bigand, 2000).

Néanmoins, les prédictions neurales déclenchées par la mémoire ne sont pas la seule forme

de prédiction que l’on trouve dans la littérature. L’autre forme prédominante de prédiction est

en effet considérée comme étant déclenchée par le système moteur. Une abondante littérature

sur la parole montre que la parole cachée (ou l’imagerie mentale) affecte le cortex auditif (Y.

Ding et al., 2019; Tian & Poeppel, 2010; 2012; 2013; Whitford et al., 2017), notamment sous la

forme d’une copie d’efférence(Tian & Poeppel, 2010; 2012; 2013) utilisée pour calculer une er-

reur de prédiction(Ventura et al., 2009) permettant un retour d’information auditif. Cette idée

est également présente en dehors de la communauté de la parole, par exemple, les sons séman-

tiques liés à une action motrice suscitent une activation dans les aires motrices somatotopiques,

tandis que les sons non sémantiques (tons purs) suscitent une activité uniquement dans les

aires temporelles(Grisoni et al., 2019). Mais, plus intéressant encore, cette idée est également

présente dans les neurosciences de la musique, une étude ECoG a montré que la lecture si-

lencieuse d’un piano électronique (son coupé) suscitait des activations auditives très similaires

à celles induites par la lecture réelle des mêmes morceaux, démontrant que les mouvements

moteurs peuvent moduler l’activité auditive(Martin et al., 2017). Dans le sens inverse, il a

été démontré que l’audition notationnelle (Brodsky et al., 2008) (imagerie musicale entraînée

par la lecture de partitions musicales) et l’écoute (Pruitt et al., 2018) génèrent une excitation

dissimulée des plis vocaux avec une signature neuronale similaire à celle observée pendant

l’imagerie musicale (Zatorre et al., 1996), démontrant la modulation de l’activité motrice par

l’activité auditive. Enfin, une autre étude a demandé à des pianistes et clarinettistes profession-

nels de regarder des vidéos de musiciens professionnels jouant des morceaux connus sur leur

instrument (piano ou clarinette). Certaines notes étaient décalées par rapport à la vidéo. Les

notes mal assorties ont déclenché des ERP différents de ceux des autres notes, ce qui montre

un réseau de prédiction clair entre les cortex moteur, visuel et auditif. (Mado Proverbio et al.,
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2014). Dans ce chapitre, nous présenterons deux études portant sur de nouveaux modèles de

calcul des prédictions neuronales sensori-motrices. La première étude s’inspirera des prédic-

tions bidirectionnelles caractérisées entre les aires motrices et auditives pendant la parole et

discutera de la raison évolutive d’un tel chemin direct entre les aires auditives et motrices en

tant que chemin nécessaire à l’apprentissage de la production de sons à travers la présentation

d’un nouveau modèle informatique pour l’apprentissage des interactions sensori-motrices. La

seconde étude présentera un modèle informatique similaire pour l’apprentissage de la produc-

tion sensori-motrice dans le cas de la musique.

Pour revenir à la théorie du codage prédictif, elle postule, qu’au delà d’emettre des predic-

tions, que le cerveau apprend à predire et ceux à partir des diverses entrées sensorielles qui

decrivent le monde extérieur. Sur la base de cette idée, je propose un cadre neurobiologique

visant à élucider les différences culturelles dans les modèles neuronaux d’attente musicale.

Nous avons conçu un ensemble d’expériences utilisant diverses techniques d’enregistrement,

notamment l’électrophysiologie humaine (EEG), l’imagerie (IRMf) et les enregistrements com-

portementaux, ainsi que l’électrophysiologie corticale invasive (ECoG) et l’imagerie par ultra-

sons (FUS) dans le modèle animal du furet. Ces expériences s’articulent autour du concept

d’apprentissage implicite des structures musicales (E. E. Hannon & Trehub, 2005b; Loui et

al., 2010). Comme ce mécanisme devrait influencer la manière dont les auditeurs prédisent

et donc perçoivent la musique, nous l’appelons Enculturation, comme indiqué dans la littéra-

ture sur la cognition musicale comportementale(Demorest et al., 2008; E. Hannon & Trainor,

2007; Haumann et al., 2018; Morrison et al., 2008; M. T. Pearce, 2018; van der Weij et al.,

2017; Wong et al., 2009). Dans ces expériences, nous avons demandé à des participants occi-

dentaux d’écouter de la musique traditionnelle chinoise non familière de la région de Shanxi

(pendant que leur activité cérébrale était surveillée par EEG), et de signaler le plaisir qu’ils

avaient ressenti pendant l’exposition. Ce test s’est déroulé en trois temps : avant et après une

phase d’exposition à domicile, ainsi que deux mois après la phase d’exposition. Cette phase

d’exposition à domicile portait soit sur de la musique chinoise non familière (groupe test), soit

sur de la musique occidentale familière (groupe témoin). L’analyse a montré que les potentiels

de réponse évoqués par la note présentaient des amplitudes réduites chez les participants ex-

posés à la musique chinoise par rapport à ceux exposés à la musique occidentale. Ce modèle de

résultats s’aligne parfaitement sur un modèle de corrélation, dans lequel l’IDyOMpy formé à la

chanson chinoise exposée présente des corrélations accrues après l’exposition pour le groupe

test, mais pas pour le groupe témoin. Il est important de noter que ces résultats sont validés

par des enregistrements électrophysiologiques dans le cortex auditif d’un modèle animal de

furet. Les deuxièmes expériences physiologiques ont utilisé des techniques d’imagerie par ul-

trasons pour obtenir des résultats préliminaires prometteurs dans le cerveau des furets. Bien

que certaines de ces données soient encore préliminaires, elles ont stimulé les discussions sur
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le rôle évolutif de la musique. En outre, les données comportementales humaines ont montré

une augmentation du plaisir auto-déclaré dans le groupe testé, mais pas dans le groupe témoin,

ce qui est cohérent avec la littérature existante sur la relation entre la prévisibilité et le plaisir

musical(Droe, 2006; Martindale & Moore, 1989; Martindale et al., 1990; Soley & Hannon,

2010). Ceci est également lié à des études récentes sur l’effet Wundt(Berlyne, 1971; Chmiel &

Schubert, 2017) qui met en évidence une relation non linéaire en U inversé entre le plaisir mu-

sical et l’attente, suggérant qu’un niveau optimal de surprise génère un plaisir maximal(Cheung

et al., 2019; Gold, Pearce, et al., 2019). La familiarisation passive avec une musique inconnue

améliore donc les capacités de prédiction et permet de se rapprocher du plaisir optimal.

Tout le cadre analytique susmentionné de ma thèse présuppose que l’appréciation de la

musique est principalement façonnée par des influences culturelles. Pour évaluer cette hy-

pothèse de manière critique, nous avons mis en place des collaborations solides visant à mener

une étude génétique avec des frères et sœurs jumeaux. Cette étude vise à élucider les com-

posantes héréditaires des préférences musicales et à les juxtaposer à l’impact des facteurs

provenant des expériences individuelles, souvent appelés "environnement non partagé". En

outre, nous voulions voir dans quelle mesure ces facteurs pouvaient être expliqués par le statut

socio-économique de nos participants, ajoutant ainsi une couche nuancée à notre exploration.

En outre, nous nous sommes lancés dans une exploration des origines socioculturelles à mul-

tiples facettes des préférences musicales. Une enquête interculturelle a été menée à Paris et

à Rome, impliquant des participants dans des expériences cognitives suivies d’entretiens soci-

ologiques approfondis. Ces entretiens ont permis de recueillir un certain nombre de paramètres

socioculturels. En nous appuyant sur ce riche ensemble de données, nous nous efforçons

d’acquérir une compréhension globale des éléments constitutifs qui influencent les préférences

musicales et leurs origines. Ce faisant, nous visons à affiner et à développer nos théories exis-

tantes concernant les fondements de l’appréciation de la musique.
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1 INTRODUCTION
It always struck me to see that different people could like vastly different songs, and even

perceive them in drastically different ways, to the point that two friends could use opposite

words to describe the same piece of music. I therefore always wanted to study music percep-

tion but did not know where to start. As an undergraduate student in Biology and Computer

Science, I designed formal and statistical models of music that were mainly used to generate

new music in the style of. But later, my master’s degree in musicology allowed me to understand

better how musical expressions work and evolved across history, and also how they could differ

between cultures. My master’s thesis therefore evolved to reflect these interests, focusing on

how musicology could make use of computational models of music. Soon after, I discovered

that the same statistical models I worked with were also predictive of neural activity during

music listening. It was a real turning point in my intellectual life. It bridged the gap between

all my interests: Music, Computer Science, and Biology. I, therefore, decided to start my PhD

around those ideas: how computational models of music could shed light on how the brain gen-

erates predictions about upcoming musical notes and how those predictions reflect the culture

and the unique sensibility of listeners.

Today, I am very proud to present the results of this journey, even if very incomplete. This

thesis is, I hope, like my academic education: multi-disciplinary. I consider this work to be

centered on music cognition, influenced by and borrowing techniques from neuroscience, com-

puter science, statistics, experimental psychology, sociology, and, more generally biology. For

instance, I will present work based on brain recordings through electroencephalography (EEG)

which is a non-invasive way of recording brain activity, self-reported musical pleasure, and

even invasive recordings of electrical brain activity in ferrets listening to music. Those data

will be analyzed using various techniques to pinpoint how the brain reacts to music and mea-

sure individual preferences for given songs. At the end of the dissertation, I will open up on two

ongoing studies in genetics and the sociology of music to give a finer-grained view of individual

differences.

First, I place this work into the framework of the predictive coding theory(Clark, 2013; K. J.

Friston et al., 2010) and will review the literature and present evidence that the brain is com-

puting predictions about upcoming musical notes in the context of melody listening through

two different experiments. Many studies already investigated musical predictions in the brain

and, for instance, showed that harmonic violation generated specific responses(Koelsch, 2009;

Koelsch & Mulder, 2002; Koelsch et al., 2000; Leino et al., 2007; Loui et al., 2005; Saarinen et

al., 1992; Steinbeis et al., 2006) known as the ERAN (Early Right Anterior Negativity)(Koelsch,

2009). This response has also been shown to continuously correlate with musical expectation

as computed by statistical models (Di Liberto, Pelofi, Bianco, et al., 2020; Omigie, Pearce, et al.,
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2019; Omigie et al., 2013a). In the first set of experiments, I extend this literature with record-

ings of professional musicians listening to and imagining Bach’s chorales. As new evidence

for predictions in the brain, I demonstrate, with colleagues, that natural moments of silence

during those chorales contain brain responses that have the typical signature of prediction sig-

nals (negative polarity) and that those responses also have their amplitude correlated with the

probability of their expectations estimated. On the other hand, fMRI studies showed imagery

brain responses partially overlap with listening responses (Bastepe-Gray et al., 2020; Bunzeck

et al., 2005; Griffiths, 1999; A. R. Halpern, 2001; A. R. Halpern & Zatorre, 1999; A. R. Halpern

et al., 2004; Herholz et al., 2012; Hubbard, 2013; Kraemer et al., 2005; Lima et al., 2015; Yoo

et al., 2001; Zatorre & Halpern, 2005; Zatorre et al., 1996; Zhang et al., 2017). However, the

field was missing clear electrophysiological characterization of those responses. We showed

that their dynamics were very related to those of during perception as they were of an almost

perfect inverted polarity. We showed that it was possible to use imagery response to reconstruct

listening responses, and inversely, very in line with the previous literature.

Neural predictions triggered by memory are not the only form of prediction to be found

in the literature. The other predominant form of prediction is indeed thought to be triggered

by the motor system. A substantial literature on speech shows that covert speech (or mental

imagery) does affect the auditory cortex (Y. Ding et al., 2019; Tian & Poeppel, 2010; 2012;

2013; Whitford et al., 2017), especially in the form of an efference copy(Tian & Poeppel, 2010;

2012; 2013) that is used to compute a prediction error(Ventura et al., 2009). That is why we

complement our work with two studies on sensory-motor interactions which include two new

computational models based on the Mirror Network architecture. This architecture is based

on the findings that motor areas send a parallel internal neural copy of the speech signal to

the auditory cortex – the forward prediction signal,(Hickok & Poeppel, 2007) along with an

inverse mapping from the auditory to the motor areas during listening(Stephen et al., 2004).

This architecture replicates our findings in electrocorticography (ECoG) data and allows for

a functional explanation of the role of those efference copies as a necessary mechanism for

sensory-motor learning of speech and music production.

Computational models of music are widely used by the community whether in behavior(J. J.

Bharucha & Stoeckig, 1986; Bigand & Pineau, 1997; Bigand et al., 2001; Margulis, 2003; Mar-

gulis & Levine, 2006; Marmel et al., 2008; 2010; Omigie, Pearce, & Stewart, 2012; Tillmann et

al., 2006), electrophysiology (Di Liberto, Pelofi, Bianco, et al., 2020; A. R. Halpern et al., 2017;

Marion et al., 2021; Omigie, Pearce, et al., 2019; Omigie et al., 2013a; M. T. Pearce et al., 2010;

Quiroga-Martinez, C. Hansen, et al., 2020; Quiroga-Martinez, Hansen, et al., 2020) and even

fMRI(Cheung et al., 2019) studies. However, IDyOM, the dominating model in the field, has

intrinsic limitations: its modularity and its specificity to symbolic data (musical score, as op-

posed to audio recordings). Therefore, we present two new versions of computational models
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of musical expectation. They are based on the work of Marcus Pearce (following the IDyOM

framework(M. T. Pearce, 2005)) but present implementation improvements and new features

that have been already used in my studies. IDyOMpy is a Python formulation of IDyOM, which

thanks to its modular code structure, allows for easy modification and additions of new fea-

tures. This implementation also presents a new way of merging the statistics gathered at differ-

ent temporal scales and allows for better performances based on different measures. MusiREX

is a re-implementation of the D-REX model(Skerritt-Davis & Elhilali, 2018; 2019), originally

formulated in the LCAP Lab at John Hopkins University. This new version now follows the

structure of the IDyOM model (long- and short-term, cross-validation/train-test, fixed tempo-

ral dependencies) and works directly from midi files. It allows better performances than the

two previous IDyOM implementations on different measures and also allows for using real au-

dio recordings instead of solely symbolic midi files. These two new models are quite effective

at accounting for the responses of the human brain.

The predictive coding theory posits that the brain, in addition to sending predictions, also

learns to predict based on the statistics of the sensory inputs, and incorporates them in an

internal model of the external world even during passive exposure(Loui & Wessel, 2008; Loui

et al., 2006; 2010; M. Rohrmeier & Cross, 2009; 2013; M. Rohrmeier et al., 2011). Based

on this idea, I propose a neurobiological framework aimed at elucidating cultural differences

in neural models of musical expectation. We designed an array of experiments utilizing vari-

ous recording techniques, encompassing human electrophysiology (EEG), imaging (fMRI), and

behavioral recordings, as well as invasive cortical electrophysiology (ECoG) and ultrasound

imaging (FUS) in the ferret animal model. These experiments revolved around the concept

of implicit learning of musical structures (E. E. Hannon & Trehub, 2005b; Loui et al., 2010).

Because this mechanism should shape the way listeners predict and therefore perceive music,

we call this mechanism Enculturation, as referred to in the literature on behavioral music cogni-

tion(Demorest et al., 2008; E. Hannon & Trainor, 2007; Haumann et al., 2018; Morrison et al.,

2008; M. T. Pearce, 2018; van der Weij et al., 2017; Wong et al., 2009). In my experiments,

Western participants were asked the listen to unfamiliar traditional Chinese music from the

region of Shanxi (while their brain activity was monitored through EEG), and to report the

pleasure they felt during the exposure. This testing occurred in three epochs: before and after

an at-home exposure phase as well as 2 months after the exposure phase. This at-home expo-

sure phase was either to Chinese unfamiliar (test group) music or to Western familiar (control

group) music.

The analysis shows that note-evoked response potentials exhibited reduced amplitudes in

participants exposed to Chinese music compared to those exposed to Western music. This pat-

tern of results aligns seamlessly with a correlation model, wherein IDyOMpy trained on the

exposed Chinese song exhibits enhanced correlations after exposure for the test group but not
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for the control group. Importantly, these findings are validated by electrophysiological record-

ings in the auditory cortex of a ferret animal model. In addition, human behavioral data showed

increased self-reported pleasure in the test group but not the control group, consistent with ex-

isting literature on the relationship between predictability and musical enjoyment(Droe, 2006;

Martindale & Moore, 1989; Martindale et al., 1990; Soley & Hannon, 2010). Those results are

related to recent studies on the Wundt effect(Berlyne, 1971; Chmiel & Schubert, 2017) which

highlights a non-linear inverted-U relationship between musical pleasure and expectation, sug-

gesting that an intermediate optimal level of surprise generates maximal pleasure(Cheung et

al., 2019; Gold, Pearce, et al., 2019). The passive familiarization with unfamiliar music, there-

fore, increases musical pleasure by enhancing predictive abilities and moving the cursor closer

to the optimal pleasure.

All the above analytical framework in my thesis presupposes that musical enjoyment is

predominantly shaped by cultural influences. Passive exposure to music would induce implicit

learning (that we call enculturation) building an internal model of music. This internal model

is also used to generate predictions about new incoming music. We call the degree to which a

prediction is accurate prediction error which is known to relate to musical pleasure and activity

in the dopaminergic regions in the form of an inverted U shape. Because the internal model

of predictions is built through enculturation throughout our entire life to match the music of

our environment, this environment, which is different for each individual, is the key element

shaping our perception. Therefore, this work gives a clear link between cognition and sociology,

revealing the neural underpinnings of the already studied mechanism of social reproduction.

To critically assess this assumption, we have initiated robust collaborations aimed at con-

ducting a genetic study with Twin siblings. This study seeks to elucidate the hereditary com-

ponents of musical preferences and juxtaposes them with the impact of factors originating

from individual experiences, often termed the "non-shared environment". Additionally, we in-

tended to see to which extent these factors could be explained by the socio-economic status

of our participants, adding a nuanced layer to our exploration. Furthermore, we embarked

on an exploration of the multifaceted sociocultural origins of musical preferences. A cross-

cultural investigation was conducted in Paris and Rome, involving participants in cognitive

experiments followed by in-depth sociological interviews. These interviews yielded a number

of socio-cultural parameters. Leveraging this rich dataset, we endeavor to comprehensively

understand the constituent elements influencing musical preferences and their origins. In do-

ing so, we aim to refine and expand upon our existing theories regarding the underpinnings of

musical enjoyment and their relationship with the enculturation mechanism.

Because of the extensive number of fields invoked in this thesis, we decided to create stand-

alone general introductions and discussions for each chapter and avoided overloading this gen-

eral introduction with too many references from very different fields. The reader can therefore
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refer to the specific chapters for a detailed literature review and integration of the work in

each field. The present PhD thesis is composed of 4 published papers (chapter 2), 2 ready-

to-submit papers (chapter 3), 1 under-the-process of writing paper (chapter 4), and 2 newly

started projects (chapter 5). Those details will be clearly stated at the beginning of each chapter

and all the collaborators and their roles will be reported.
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2 EVIDENCE OF MUSICAL PREDICTIONS IN THE

BRAIN
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2.1 General Introduction to Musical Predictions in the

Brain

While perception clearly involves the processing of sensory information, sensory inputs are

not enough to give a full account of perceptual processes. Indeed, sensory stimuli (e.g., sound

or image) may be perceived differently by different people (Brainard & Hurlbert, 2015; Press-

nitzer et al., 2018) or even by the same person but under different conditions (Chambers et al.,

2017; Pelofi et al., 2017; Snyder et al., 2015).

2.1.1 Predictive Coding Theory

An explanation of this phenomenon is provided by the Predictive Processing Framework

(Clark, 2013; K. J. Friston et al., 2010). This framework revolves around the idea that the

brain develops a model of the world that is used to predict sensory inputs and is continuously

updated by comparing predicted and actual stimuli (Barlow et al., 1961). Thus, perception

emerges from the interplay of sensory inputs (S) and internal expectations or predictions (P).

The comparison between sensory inputs and their prediction produces a prediction error (PE,

δ = S-P) which, among other functions, enables the update of the internal prediction model

itself (Näätänen et al., 2007). Therefore, perception is an active process through which our

brain continuously monitors the statistics of incoming sensory information so as to (i) learn

and update an internal model of the regularities in the world around us; and (ii) predict based

on this model the incoming sensory input so as to modulate their neural encoding and facili-

tate their perception under challenging conditions, e.g. when restoring missing or noisy parts

of a stimulus (Leonard et al., 2016) or biasing the perception of images or sounds that are

ambiguous (Brainard & Hurlbert, 2015; Pressnitzer et al., 2018).

Music perception, in particular, offers an illuminating paradigm to explore implementations

of Predictive Processing principles because of its structural, temporal, timbral, melodic, or har-

monic regularities (Koelsch et al., 2019; M. A. Rohrmeier & Koelsch, 2012). Thus, in contrast

to the processing of random and unpredictable sensory inputs, the highly structured musical

signal yields competing predictions about upcoming events. Specifically, the temporal regular-

ity of music that is present at different time scales leads to recurrent patterns of melody. Hence,

music can present regularities due to the repetition of the same pattern as well as regularities

that may be unpredictable based solely on the proximal context, but nevertheless consistent

with rules within a particular musical style or culture (Margulis, 2014).

The types of predictions one can make when listening to music can be further differentiated

into the prediction itself and the certainty of the prediction (Koelsch et al., 2019; M. T. Pearce &
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Wiggins, 2006; Sohoglu & Chait, 2016). For instance, upon hearing a tonal chord progression,

one can predict the next chord. In this process, a prediction about the content is made (what

chord exactly is to be played next) but also an estimate of how certain this prediction is given

the context. Hence, a set of irregular chords may also constitute an unpredictable context that

will hinder the listener’s ability to make accurate predictions on upcoming events (Bianco et al.,

2020; Hansen & Pearce, 2014). The certainty of prediction modulates the gain associated with

the response error (K. Friston, 2009; Kanai et al., 2015), even in the context of natural music

listening (Hsu et al., 2015) and therefore ultimately plays a role in how unexpected events are

utilized to update the model of expectations (Hansen & Pearce, 2014; Koelsch et al., 2019).

2.1.2 Behavioral and Neural Evidence

Behavioral evidence for predictive processing during music listening has been observed in

response to artificial stimuli containing more or less expected events (e.g. a Dominant chord

resolving either on a Tonic or on a Neapolitan sixth). In priming experimental design, when ask-

ing listeners to detect timbre deviants, faster Response Times (RTs) were associated with more

expected musical stimuli (J. J. Bharucha & Stoeckig, 1987; Bigand & Pineau, 1997; Tillmann

et al., 2006; 2007). Performance accuracy was also shown to improve with note predictabil-

ity (J. J. Bharucha & Stoeckig, 1987). Importantly, listeners with no formal musical training

demonstrated similar priming effects as trained musicians (J. J. Bharucha & Stoeckig, 1986;

Bigand & Pineau, 1997; Tillmann et al., 2006), further supporting the hypothesis that pre-

dictive processing during music listening does not require formal musical training (Tillmann,

Bharucha, & Bigand, 2000).

Numerous neuroimaging and neurophysiological studies have been conducted to highlight

neural markers of predictive coding during music listening. Typically, these consisted of record-

ings of the neural responses in participants listening to musical events whose predictability

was well-controlled and modulated. The earliest such measurements utilized irregular chord

sequences comprising Neapolitan sixth chords which were harmonically distant from the har-

monic context (Koelsch et al., 2000; Leino et al., 2007; Loui et al., 2005). The irregular chords

elicited Evoked Response Potentials (ERPs) very similar to the Mismatch Negativity response

(MMN) (Saarinen et al., 1992) and was referred to as the ERAN (Early Right Anterior Nega-

tivity). This "music-syntactic MMN" has a negative polarity, maximally observed over frontal

right sensors, and a peak latency of about 150-180 ms, although longer latencies have also

been observed (Koelsch & Mulder, 2002; Steinbeis et al., 2006). As opposed to MMN, ERAN

relies on musical syntax stored in long-term memory and acquired through life-long exposure

to music, whereas MMN responses are based on regularities that are extracted online from the

local auditory environment (Koelsch, 2009).
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2.1.3 Motor Predictions

The literature also depicts motor predictions as a predominant form of prediction in the

brain. Considerable research focusing on speech indicates a tangible impact of covert speech

(or mental imagery) on the auditory cortex (Y. Ding et al., 2019; Tian & Poeppel, 2010; 2012;

2013; Whitford et al., 2017), especially in the form of an efference copy(Tian & Poeppel, 2010;

2012; 2013) making possible to computation of a prediction error(Ventura et al., 2009) used for

auditory-sensorimotor feedback. This idea is also present outside of the speech community, for

instance, semantic sounds linked to a motor action elicit activation in somatotopic motor areas

whereas non-semantic sounds (pure tones) elicit activity solely in the temporal areas(Grisoni

et al., 2019). But, more interestingly, this idea is also present in the neuroscience of music, one

ECoG study showed that silent playing of an e-piano (sound turned off) elicited auditory acti-

vations very similar to those induced by the actual playing of the same pieces demonstrating

that motor movements can modulate auditory activity(Martin et al., 2017). In the reverse di-

rection, notational audiation (Brodsky et al., 2008) (musical imagery driven by reading music

scores) and listening (Pruitt et al., 2018) have been shown to generate covert excitation of the

vocal folds with a neural signature similar to that observed during musical imagery (Zatorre

et al., 1996), demonstrating the modulation of the motor activity by the auditory activity. Fi-

nally, another study asked professional pianists and clarinetists to watch videos of professional

musicians playing known pieces on their instruments (piano or clarinet). Some notes were

mismatched with respect to the video. The mismatched notes elicited different ERPs than the

other notes showing a clear prediction network between the motor, visual, and auditory cortex.

(Mado Proverbio et al., 2014)

2.1.4 Scientific Contribution

In this chapter, we will present 2 studies investigating silence in music and 2 studies inves-

tigating new computational models of sensory-motor neural predictions.

Musical imagery is the voluntary hearing of music internally without the need for physical

action or acoustic stimulation. Previous fMRI studies have found shared areas of cortical acti-

vation for imagery and listening tasks, but also non-overlapping ones (see (Zatorre & Halpern,

2005) for a review). Still, the nature and functional role of such activation remains uncer-

tain. That is why we decided to conduct a study in order to characterize the neural responses

during musical imagery, to compare them to those during listening and to give a specific at-

tention to the expectation mechanism in order to pinpoint to functional role and the nature of

imaginary-induced response.

The second hypothesis of the Preditive Coding Theory (c.f. 2.1.1) claims that each neural
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response should be composed of PE, δ = S-P with S the sensory signal and P the prediction

signal. Following this idea, ubiquitous moments of silence in music should therefore contain

a prediction signal consistent with the internal prediction of the listeners (δ = -P, as S = 0).

Even if vigorous responses to silences have been observed across modalities when a sensory

stimulus was strongly expected, for example corresponding to an omission during the rapid

isochronous presentation of tones (Chennu et al., 2016; Joutsiniemi & Hari, 1989; Simson

et al., 1976; Yabe et al., 1997), this hypothesis has never been shown for natural silences in

ecologically-valid music. We therefore decided to investigate this question in a second study.

From the results of those two studies, we designed a model for predictions in the human

brain listening to music that slightly extends the strict frame of the predicting coding theory;

this model will be discussed at the end of the chapter. We also designed a similar model for

cross-modal predictions between the auditory and motor areas. We present two models which,

consistently with the literature, use the idea of efference copy(Tian & Poeppel, 2010; 2012;

2013) for which the purpose of the backward efference copy (from motor to auditory) would

be required to back-propagate the production error in order to learn to control the vocal tract.

We then apply this same model to a music synthesizer to show its computational efficiency.

Those four sections are direct re-use of already published work. The author list as well as

a reference to the published study are included at the beginning of each section. The articles

have been slightly modified to fit this document. Especially, we removed the parts of study

#3 which I did not directly participate in. I have designed the experimental protocol and

collected the data of studies #1 and #2. I conducted the analysis, generated the figures, and

wrote the manuscript of study #1. I implemented the statistical model of music required in

study #2 to compute probabilities to have notes in moments of silence. Giovanni Di Liberto

conducted the analyses, generated the figures, and wrote the manuscript. I implemented the

MirrorNet in study #3 from the first implementation from Cong Han, conducted the analyses,

and generated the figures related to the MirrorNet, I wrote the text relative to the MirrorNet,

and Shihab Shamma wrote the rest of the text of the manuscript. I participated in the design of

study #4, especially the choice of the synthesizer and its control through the MirrorNet. Yashish

M. Siriwardena implemented this new version using my code from study #3, conducted the

analyses, generated the figures, and wrote the manuscript. Shihab Shamma supervised the

scientific process and proofread the manuscripts of all those studies.
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2.2 The Music of Silence. Part I: Responses to Mu-

sical Imagery Encode Melodic Expectations and

Acoustics1

2.2.1 Introduction

Musical imagery is the voluntary hearing of music internally without the need for physical

action or acoustic stimulation. This ability is important in music creation (Godoy & Jorgensen,

2012), from composition and improvisation to mental practice (Bastepe-Gray et al., 2020). One

notable example is Robert Schumann’s piano method, in which students are asked to reach the

point of "hearing music from the page". But, what are the neural underpinnings of such musical

imagery?

Previous fMRI studies have found shared areas of cortical activation for imagery and listen-

ing tasks, but also non-overlapping ones (see (Zatorre & Halpern, 2005) for a review). The

shared activation was measured across several areas of the human cortex (Hubbard, 2013),

specifically in the auditory belt areas (A. R. Halpern et al., 2004; Herholz et al., 2012; Kraemer

et al., 2005; Zatorre et al., 1996), the association cortex (A. R. Halpern & Zatorre, 1999; Krae-

mer et al., 2005), the prefrontal cortex (A. R. Halpern & Zatorre, 1999; Herholz et al., 2012;

Lima et al., 2015) and Wernicke’s area (Zhang et al., 2017). Musical imagery also seems to

engage motor areas (e.g. (A. R. Halpern, 2001; A. R. Halpern & Zatorre, 1999; Herholz et al.,

2012; Zhang et al., 2017)), showing spatial activation patterns that are correlated with those

measured during music production (Meister et al., 2004; Miller et al., 2010). Interestingly,

there is only limited evidence for activation during musical imagery in the primary auditory

cortex (e.g. (Bastepe-Gray et al., 2020; Bunzeck et al., 2005; Griffiths, 1999; A. R. Halpern et

al., 2004; Yoo et al., 2001)), although this region is strongly activated during musical listening.

Although these previous studies provided detailed insights into which areas are active dur-

ing musical imagery, the nature and functional role of such activation remains uncertain. One

reason lies in the difficulty of studying the temporal dynamics of the underlying neural re-

sponses and processes with relatively slow fMRI measurements. A recent study using broadly

distributed electrocorticography (ECoG) recordings has indicated that music listening and im-

agery activated shared cortical regions but with a latency of a reversed sequential order be-

tween the auditory and motor areas (Y. Ding et al., 2019). Beyond this, a 2001 study using

electroencephalography (EEG) showed that mental continuation of melodic fragment gener-

ated electrical responses correlated with the N100 topography during music listening and did

1Authors: Guilhem Marion, Giovanni Di Liberto, Shihab Shamma(Marion et al., 2021)
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not correlate with the topography during silences(Janata, 2001).

Part of the mystery of musical imagination stems from the fact that music is an elaborate

symbolic system conveyed via complex acoustic signals, whose appreciation involves several

hierarchical levels of processing. The foundations of such hierarchy depend on the processing

of fundamental perceptual attributes, such as pitch, loudness, timbre, and space, which are

extracted and represented at or before the primary auditory cortex (Janata, 2015; Koelsch &

Siebel, 2005). Higher-order rules of grammar and engagement are then presumably imple-

mented in secondary auditory areas and other associative regions (Cheung et al., 2019; Di

Liberto, Pelofi, Bianco, et al., 2020; Zatorre & Salimpoor, 2013). These musical rules are re-

lated to how listeners interact and anticipate musical streams, in what is usually referred to as

melodic expectations. Experimentally, such expectations are assumed to play a critical role in

musical listening in relation to auditory memory (K. Agres et al., 2018) and musical pleasure

(Gold, Pearce, et al., 2019; Zatorre & Salimpoor, 2013), and to interact with the reward system

(Blood & Zatorre, 2001; Cheung et al., 2019; Salimpoor et al., 2011). However, it is unknown if

these melodic expectations play any role during musical imagery, where they could be related to

the ability to recall, create, and become emotionally engaged with the music generated within

our own minds.

Melodic expectations can be quantified using statistical models trained on a musical corpus

that summarizes the musical material listeners have been exposed to (Abdallah & Plumbley,

2009; Gillick et al., 2010; M. T. Pearce, 2005; M. Rohrmeier, 2011), thus capturing listeners’

perceptual judgments, musical reactions and expectations (C. Krumhansl et al., 1999; 2000;

M. T. Pearce, 2018). In our experiments, the musical corpus was a large repertoire of Western

music that our participants were familiar with. Using these models of melodic structure, our

experimental results suggest that imagery of naturalistic melodies (Bach chorals) elicits cortical

responses to the imagined notes, exhibiting temporal dynamics and expectation modulations

that are comparable to the neural responses recorded during music listening. We also find

that the neural signal recorded in the imagery condition could be used to robustly identify

the imagined melody with a single-trial classifier. A companion study (Di Liberto et al., 2021)

expands on these results to demonstrate that the ubiquitous short pauses and silent intervals

in ongoing music elicit responses and melodic expectations remarkably similar to those seen

during imagery. Furthermore, with the absence of simultaneous stimulus-driven (bottom-up)

responses during silence, these two studies are able to attain direct evidence of the top-down

predictive signals and processes critically involved in building musical expectations and culture.
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2.2.2 Material and Methods

Participants and Data Acquisition

Twenty-one professional musicians or in training to become professional musicians (6 fe-

male; age: M=25, SD=5) participated in the EEG experiment. The sample size was consistent

with a previous related study from our team (Di Liberto, Pelofi, Bianco, et al., 2020). Each par-

ticipant reported no history of hearing impairment or neurological disorder, provided written

informed consent, and was paid for their participation. The study was undertaken in accor-

dance with the Declaration of Helsinki and was approved by the CERES committee of Paris

Descartes University (CERES 2013–11). The experiment was carried out in a single session for

each participant. EEG data were recorded from 64 electrode positions, digitized at 2048 Hz

using a BioSemi Active Two system as well as 3 extra electrodes placed on participants skin

to record the activity of muscles of potential co-found (tongue, masseter, forearm fingers ex-

tensor). Audio stimuli were presented at a sampling rate of 44,100 Hz using a Genelec 8010

10w speaker and Python code for the presentation. Testing was carried out at École Normale

Supérieure, in a dark soundproof room. Participants were asked to read the music scores fixed

at the center of the desk during both imagery and listening conditions, however, they were

instructed to minimize motor activities during the whole experiment. A SM58 microphone was

placed in the booth in order to record participant sounds and make sure that they were not

singing, taping, nor producing sounds during the experiment. The experimenter listened to

those sounds online. Before the experiment, all participants took The Advanced Measures of

Music Audiation (AMMA) online using the official website giamusicassessment.com.

A tactile metronome (Peterson Body Beat Vibe Clip) playing 100 bpm bars (each 2.4 s) was

placed on the left ankle of the participants to provide them with a sensory cue to synchronize

their imagination. The start of each trial (listening and imagery) was signaled by a short vibra-

tion on the vibro-tactile metronome device followed by a four-beat countdown. Notes closer

than 500 ms from a metronome vibration were excluded in order to avoid potential contamina-

tion from the tactile stimulus. Experimental assessment showed that the metronome precision

was within 5 ms, thus it did not impact our experiment. A constant lag was determined experi-

mentally during the pilot experiments to compensate for perceptual auditory-tactile delays; the

latency of 35 ms was determined and applied on all participants.

EEG Experimental Protocol

All participants were chosen to be very well-trained musicians and were all professionals or

students at Conservatoire National Supérieur de Musique (CNSM) in Paris. They were given

the musical score of the four stimuli in a one-page score and could practice on the piano for
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about 35 minutes. The experimenter checked their practice and verified that there were no

mistakes in the execution. After practice, participants were asked to sing the four pieces in the

booth with the tactile metronome, the sound was recorded in order to check their accuracy

offline.

The experiment consisted of a single session with 88 trials. For each condition (listening

and imagery) each of the four melodies was repeated 11 times. Trials order was shuffled both

in terms of musical pieces and conditions. In the listening condition, participants were asked

to passively listen to the stimuli while reading the musical score. For the imagery condition,

they were asked to imagine the melody in sync with the tactile metronome as precisely as

they could. At the end of every four trials, a break was possible; participants were able to

wait as long as they wanted before they continued with the experiment. A sheet of paper was

available in the experimental booth, where participants were instructed to report trials where

their imagination did not end with the metronome vibration, and therefore were performing

the imagery task with incorrect synchronization. No participants reported any mistakes in that

sense.

Synchronizing participants’ imagination with stimuli is a challenging problem. Previous

studies used the so-called filling in paradigm where participants are asked to fill an artificial

blank introduced in the musical pieces using imagery (Cervantes Constantino & Simon, 2017;

Y. Ding et al., 2019; Kraemer et al., 2005), which was not optimal for our experiment as it

does not allow for imagery of long stimuli. Other studies displayed visual cues in karaoke-like

fashion (Herholz et al., 2012) or used dynamic pianoroll visuals of the stimuli (Zhang et al.,

2017). However, several studies have shown that, given the task of synchronizing movements

with a discretely timed metronome (e.g., tapping a finger), humans have a striking advantage

with auditory metronomes over visual ones (Jäncke et al., 2000; Repp, 2005; Repp & Penel,

2004). In addition, a recent study showed that such an advantage is conserved with tactile

metronomes (Ammirante et al., 2016). We assumed that a tactile metronome was less likely to

contaminate imagery responses than an auditory metronome because of the different sensory

modalities. Therefore, we decided to use a tactile metronome even if some studies suggest that

it can induce auditory responses (Ammirante et al., 2016).

Stimuli

Four melodies from the corpus of Bach chorals were selected for this study (BWV 349,

BWV 291, BWV354, BWV 271). All chorals use similar compositional principles: the composer

takes a well-known melody from a Lutheran hymn (cantus firmus) and harmonizes three lower

parts (alto, tenor and bass) accompanying the initial melody on soprano, these cantus firmi

were usually written during the Renaissance era. Our analysis only uses monophonic melodies,
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we therefore only use these cantus firmi as stimuli for our experiment, original keys were

kept. The chosen melodies follow the same grammatical structures and show very similar

melodic and rhythmic patterns. Participants were asked to listen to and imagine these stimuli

at 100 bpm (about 30 seconds each). The audio versions were synthesized using a Fender

Rhodes simulation software (Neo-Soul Keys). The onset-times and pitch values of the notes

were extracted from the midi files that were precisely aligned with the audio versions presented

during the experiment (see Figure 2.1).

Tools

IDyOM Information Dynamics Of Music (IDyOM) is a statistical model of musical expecta-

tion based on variable-order Markov chains (M. T. Pearce, 2005). This model allows for the

quantitative estimation of the expectedness of a musical note, which have been shown to be

physiologically valid by number of studies(K. Agres et al., 2018; Di Liberto, Pelofi, Bianco,

et al., 2020; Egermann et al., 2013; Omigie, Pearce, & Stewart, 2012; Omigie, Pearce, et al.,

2019; Song et al., 2016). First, the model has been shown to correctly identify melodic expec-

tation patterns in a consistent way with a musicological analysis (Meyer, 1973) of Schubert’s

Octet for Strings and Winds made by Leonard Meyer in 1973 (M. T. Pearce, 2018). The model

also showed correlated expectation values with ones estimated from a behavioral experiment

(Manzara et al., 1992). IDyOM was able to account for approximately 63% of the variance in

the mean uncertainty estimates reported by the original authors (M. T. Pearce, 2005). Finally,

a recent study (Di Liberto, Pelofi, Bianco, et al., 2020) showed that amplitude modulations

in EEG and ECoG responses to monophonic music are correlated with the expectation values

computed with IDyOM.

The IDyOM model is composed of two modules: a long-term model (LTM) that is pre-trained

on a musical corpus (which did not include the stimuli presented in this experiment) in order

to capture style-specific global patterns, and a short-term model (STM) that is trained on the

preceding proximal context in the current piece to estimate expectedness based on local melodic

sequences. Both modules use the same underlying method: Markov chains of different orders

(n-grams as states) that can describe melodic patterns at various time scales. All the Markov

chains are then aggregated into one model by merging all the probability distributions (M. T.

Pearce, 2005). In our analysis, we use the IDyOMpy2 model, which is an implementation of

IDyOM where the Markov chains are combined through a weighting based on the entropy of

the distributions from each order. The model was trained using note duration as well as note

pitch. The joint distribution was then used to compute the unexpectedness (surprise) of events,

which was quantified by means of the Information Content value (IC):

2https://github.com/GuiMarion/IDyOM
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IC(x) = −log(P(X t = x))

mTRF We used the mTRF toolbox3 (Crosse, Di Liberto, & Lalor, 2016) to estimate the Tem-

poral Response Functions (TRFs) describing the linear mapping of melodic features (onsets,

expectation) into the EEG signal. This mapping was estimated for individual electrodes and

was based on a convolutional kernel w including various time latencies between the music and

the EEG signal:

∀t, r(t, k) = (s ∗wk)(t) + ϵ(t, k)

with t the time indices and k the electrodes and ϵ the residual response (unexplained noise).

The optimization problem is to find the vector w that minimizes this residual response ϵ

using Ordinary Least Squares method over the vector w while considering a certain degree

of regularization to prevent over-fitting by assuming a level of temporal smoothness (Ridge

regularization). The optimal regularization parameter was identified at the individual subject

level with an exhaustive search within the interval [10−6, 10]with a logarithmic step. The time-

lag window [-300,900]ms was used to fit the TRF models. The main figures report weights for

the reduced window [-100, 500], where the responses and effects of interest were hypothesized

to emerge. This framework has been shown to be effective in assessing the EEG encoding of

both low-level auditory features and higher-order auditory expectations (Broderick et al., 2018;

Daube et al., 2019; Di Liberto et al., 2015; Lalor & Foxe, 2010; O’Sullivan et al., 2014).

Data Preprocessing

EEG data were analyzed offline using Matlab software. Signals were digitally filtered using

Butterworth zero-phase filters (low- and high-pass filters of both order three and implemented

with the function filtfilt) and down-sampled to 64 Hz. The main analysis was conducted on

data filtered between 0.1 and 30 Hz. Results were also reproduced with the high-pass cut-off

frequencies 0.01 and 1 Hz (Figure 2.5). Data were then re-referenced to the average of all 64

channels. EEG channels with a variance exceeding three times that of the surrounding ones

were replaced by an estimate calculated using spherical spline interpolation.

Data Analysis

Previous studies showed that EEG responses to continuous melodies encode both the acous-

tic envelope(Di Liberto, Pelofi, Shamma, & de Cheveigné, 2020) and melodic expectations (Di

Liberto, Pelofi, Bianco, et al., 2020; Omigie et al., 2013a). The main aim of our study was to

3Downloadable at: https://github.com/mickcrosse/mTRF-Toolbox
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investigate whether that encoding is conserved during musical imagery. To this end, we as-

sessed the encoding of these features in the EEG signals by means of TRF forward modeling

predictions.

The EEG signal was grouped in 88 trials (44 per condition). Each trial was associated with

stimulus vectors representing acoustic onsets and melodic expectation:

Onsets vector: One-dimensional vector where the note onsets were marked by an impulse

with value 1. All other time-point were assigned to zero;

Expectation vector: One-dimensional vector where the note onsets were marked by an im-

pulse with value corresponding to the expectation value assigned to that note by IDyOM.

Onsets and Expectation Analyses Forward TRFs were fit and used to predict independently

each channel of the EEG signal from the onsets and the expectation signal using leave-one-trial-

out cross-validation. The correlation between the EEG signals and its prediction were computed

for each channel separately resulting in scalp topographies used to assess the spatial activation.

This signal (correlation of the feature of the signal of interest with each electrode) accounts for

where the signal is computed and not where the amplitude is the strongest, as opposed to ERP

topographic maps. Significance of the EEG prediction correlations was assessed by comparing

the results with the ones for a null-model where parameters of interest were shuffled in our

stimuli:

Onsets analysis: We shuffled the order of the trials, ensuring that the resulting shuffling does

not produce matching stimulus-EEG pairs;

Expectation analysis: We shuffled the expectation values while preserving the onset times.

This produced vectors with correct onset information but meaningless expectation values.

We ran 20 permutations for each analysis. Those distributions were used to assess signif-

icance both at the individual-subject and group levels. The group level significance was com-

puted from the correlation gain distribution with respect to the null model (expectation models

- null models or onset models - null models). We subtracted the null-model prediction correla-

tions to the expectation/onsets model prediction correlations by keeping the participants order.

Therefore, we got a distribution of 420 values (21 par t icipants ·20 shu f f l ing = 420). A con-

trol distribution was constructed by computing the difference between the null-model and other

repetitions of itself (here 21 par t icipants · 20 shu f f l ing · 19 di f f erent shu f f l ing = 7980).

This distribution accounts for the variance of the prediction correlation with a mean of 0. We

tested if the correlation gain was above the control distribution using a Wilcoxon sum rank

test. Effect sizes were computed using the common language effect size between the expecta-

tion/onsets distribution gain and the control distribution. The common language effect size
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was computed from the U statistic computed by the Wilcoxon sum rank test. The common

language effect size is defined as

f = U
n1·n2

with n1 and n2 respectively the sizes of the two distributions (expectation gain and control

distribution). As U indicates the number of pairs chosen in the two distributions that satisfy

the hypothesis (#(i, j)|D1i > D2 j), the common language effect size f therefore indicates

the normalized number of pairs that satisfy the hypothesis (100 · f % of the pairs satisfy the

hypothesis).

Cross-conditions analysis We assessed the consistency between imagery and listening re-

sponses by means of a cross-condition TRF approach. Specifically, TRF models were trained on

one condition (e.g., listening) and evaluated on the other (e.g., imagery). The resulting EEG

prediction correlations were examined to determine whether the two conditions elicited consis-

tent EEG signals. Furthermore, we investigated whether simple transformations (polarity and

latency shift) could explain possible differences between the two conditions. First, we applied

a simple polarity inversion by multiplying the TRF kernels by -1. Second, we estimated a linear

convolution mapping between the averaged listening responses and the averaged imagery sig-

nals (and vice versa) for n− 1 participants. The learned mapping was then used to transform

the listening response into imagery signal (and vice versa) in the left-out participant. The mTRF

method was then used to fit subject-specific models on that left-out subject and to predict EEG

signals based on the music onsets vectors. The resulting EEG prediction correlations indicate

whether the cross-condition mapping is consistent across participants.

Short-term and long-term models An additional analysis was conducted to assess the rela-

tive contribution of the short- and long-term modules of IDyOM to the EEG encoding of melodic

expectations. To do so, melodic expectation vectors were derived using the short- and long-

term models separately. First, short-term model expectations were used to fit TRF models and

predict the EEG. Then we used multivariate regression to predict the EEG when considering the

two expectation vectors simultaneously (short-term and long-term). In this multivariate case,

the null-model was derived by shuffling the values of the long-term expectation vector only. As

such, this approach could assess if the long-term model expectations explain EEG variance that

is not captured by the short-term expectations.

Decoding the Identity of Imagined Songs Classification was performed to decode the iden-

tity of a song from a single EEG trial. We devised a classification method using vote-boosting

based on the prediction correlations computed from a forward TRF model trained on the left-

out trials. Specifically, prediction correlations were calculated for each of the four pieces using,
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separately, the onsets and the expectation vectors. This procedure produced 128 EEG prediction

signals (64elec t rodes·2 f eatures = 128) for each piece. We then computed the correlation be-

tween the target EEG data and each predicted EEG signal estimators, leading to 128 correlation

values for each of the four pieces. For each estimator, the piece with the highest correlation

was chosen, providing one vote for that particular choice. The piece with most votes when

considering all estimators was selected as the result of the classification. The methodology is

illustrated in Figure 2.1.

2.2.3 Results

We recorded EEG signals (64-channel recording system) from twenty-one professional mu-

sicians as they imagined and listened to four monophonic Bach chorals (see Figure 2.1). In

both conditions, participants wore a vibrotactile metronome on their left ankle, which allowed

for precise synchronization during the imagery task (see Material and Methods). We first in-

vestigated the responses to the notes by regressing the EEG signals with a stimulus vector rep-

resenting the note onsets at least 500 ms away from the metronome beats. Then, the melodic

expectation for each note was estimated using a statistical model of musical structure (IDyOM)

(M. T. Pearce, 2005) trained on a large corpus of Western melodies, supposed to mimic the

musical culture of the listeners participating in this study (M. T. Pearce, 2018). We constructed

the expectation signal as a sparse vector where time onsets of notes were modulated by the ex-

pectation value computed by the statistical model of music. As cortical EEG recordings during

music listening have already been shown to encode this expectation signal (Di Liberto, Pelofi,

Bianco, et al., 2020), our analysis aimed to test the same hypothesis on the imagery condition

and to compare the temporal activation between both conditions. The music stimuli, EEG data,

and analysis codes are fully available upon request to the corresponding author.

2.2.3.1 Onsets Encoding

Temporal Response Functions (TRFs) describing the linear transformation of note-onsets to

an EEG signal (0.1-30 Hz) were estimated for both conditions using lagged linear regression

(mTRF-Toolbox (Crosse, Di Liberto, & Lalor, 2016)). EEG prediction correlations were derived

on left-out portions of the data with cross-validation. The procedure was then repeated after the

labels referring to the stimulus order were randomly shuffled (null-model; EEGi was regressed

with st im j).

Figure 2.2 shows that the note-onset vector could predict the EEG signal better than chance

in both conditions, demonstrating the robust encoding of note-onsets in the low-frequency

EEG signal (Wilcoxon rank sum test between onsets gain and control distributions; listening:
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Figure 2.1. Method Figure (A) EEG signal was recorded from participants who listened to and
imagined four monophonic Bach melodies. The musical bars were indicated using a vibrotactile
metronome. (B) Top-left panels: Onset vectors amplitude-modulated according to a statistical
model of musical expectations. Null-model distributions were derived by shuffling the expecta-
tion values while preserving the note onsets. (Top-right) Forward TRFs were estimated between
the melody vectors and the EEG signal. EEG prediction correlations were derived based on the
stimulus vectors and subtracted by the ones for the shuffled vectors, providing (Expectation
gain; green), reflecting the EEG encoding of melodic expectations. A control distribution was
derived by subtracting EEG prediction correlations between pairs of shuffled vectors (yellow).
Bottom We hypothesized a positive shift in expectation gain (green distribution) relative to the
control distribution (yellow distribution). (C) Stimuli. Musical scores and expectation vec-
tors for each of the four Bach choral stimuli. Melodies were presented at 100 bpm (about 30
seconds each). The expectation signal was computed for each of the melodies using IDyOM.
The information content value of each note (the negative log-likelihood) was used to modu-
late the note-onset values. Forward TRF models were then fit between the resulting vectors
and the EEG signal. (D) Classification Method. We trained a TRF model with leave-one-out
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we assess which piece maximizes the correlation and the final decision is the piece that occurs
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p = 8.4 · 10−220 common language effect size f = 0.98; imagery: p = 2.7 · 10−209 common

language effect size f = 0.97, see Material and Methods). The note-onset encoding was sig-

nificant at the individual participant level (17/21, p < 0.05, FDR-corrected p-values extracted

from the null-models distributions) and was most accurately encoded on central scalp areas, as

previously shown in response to auditory experiments (Di Liberto, Pelofi, Bianco, et al., 2020;

Di Liberto, Pelofi, Shamma, & de Cheveigné, 2020; Van Canneyt et al., 2020). A significant

(p = 0.02) correlation of r = 0.3 was measured between the topographies of the EEG predic-

tion values for the two conditions (Pearson’s correlation).
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Figure 2.2. Robust EEG Encoding of Note-Onsets during Imagery. (A) EEG prediction corre-
lations for the listening (top) and imagery (bottom). EEG prediction correlations were signifi-
cantly above the control distribution in both conditions. Distributions illustrate the note-onsets
correlation gain, adjusted relative to the null-model, as well as the control distribution. As for
all the next figures, the left y-axis corresponds to the number of observations of the control
distribution, and the right y-axis ones of the model of interest (here onsets gain). (B) EEG
prediction correlations for the imagery condition for individual participants. Error bars show
the standard error across the 44 trials and stars indicate significance (p < 0.05). (C) TRF
kernels on Cz. Shaded areas indicate the standard error across participants (N=21) and sig-
nificance between the two kernels computed by a permutation test (p < 0.05) is indicated by
black stars. (D) Topography of the EEG predictions gain (onset model - null model). A signif-
icant (p < 0.05) correlation of r = 0.3 was measured between the topographies of the EEG
prediction values for the two conditions (Pearson’s correlation)
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2.2.3.2 Cross-condition Analysis

In line with previous fMRI studies showing partly overlapping neural activation for auditory

listening and imagery, we anticipated that a certain degree of similarity exists between the

TRFs measured for the two tasks. Indeed, the TRF weights in Figure 2.2C provided us with a

qualitative indication of whether the cortical dynamics for listening and imagery are different.

Nevertheless, further quantitative assessment was conducted to determine the precise nature

of the similarities between the two conditions and the consistency of such similarities across

participants. One dominant difference between the two conditions is a time-shifted inverted

polarity of the TRF dynamics. This effect of condition was quantitatively assessed by the cross-

condition TRF analysis that follows (Figure 2.3).

First, we used the imagery TRF kernels to predict the listening EEG signal, and vice versa,

the listening TRF kernels to predict the imagery EEG signal. As expected, these analyses did

not produce EEG predictions that were significantly larger than the null-distribution (listening-

>imagery: p = 0.83; imagery->listening: p = 10−19, with null-model > onsets-model), con-

firming that listening and imagery responses are different. Next, we predicted listening EEG

responses from the imagery TRF kernels after a polarity inversion, leading to significant EEG

predictions (p = 10−46; (Figure 2.3), indicating that listening and imagery signals are inversely

correlated. However, inverting the listening EEG responses did not lead to an adequate pre-

diction of the EEG in the imagery condition (p = 0.14). Such an asymmetry in cross-condition

predictions most likely stems from the large difference in the amplitude (and hence the SNR)

between the two types of signals. Furthermore, it is also evident from Figure 2.3 that using only

a simple polarity inversion is likely to be a sub-optimal description of the mapping between the

TRFs in the two conditions. Therefore, we implemented a further refinement in characterizing

the relationship between the two TRFs which included a linear mapping with a convolutional

kernel as we describe next. In principle, the identification of such a reliable mapping would

usher new ways to decode imagined melodies without the need for training imagery EEG data.

A linear mapping with a convolutional kernel was computed between the averaged listening

responses and the averaged imagery responses for n − 1 participants. We then applied the

learned cross-condition mapping to estimate the imagery EEG signal of the left-out participant

based on their listening responses and the note-onset vectors. This approach led to significant

predictions (p = 10−49) of the imagery EEG, confirming a reliable relationship between the

listening and imagery responses (Figure 2.3). However, the EEG prediction correlations derived

with this methodology were not larger than the ones from the cross-participants analysis (p =
0.12), where we directly used the averaged TRF kernels from n−1 participants on the left-out

participant (see Figure 2.9). Using more complex nonlinear transformations between the two

TRF kernels may lead to better performances and then allow the computation of the imagery
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TRF kernels directly from the listening ones without having to measure imagery responses.

2.2.3.3 Encoding of Melodic Expectations

TRF models were computed to relate melodic expectations to the EEG signal. Expecta-

tions vectors were determined by modulating note-onset vectors according to the expectation

values derived with the statistical model of melodic structure IDyOM (M. T. Pearce, 2005).

Null-models were computed by shuffling the expectation values in the stimulus vectors while

preserving the note-onset information. A null-distribution of EEG prediction correlations was

then computed by running the TRF analysis on 20 shuffled versions of the expectation vectors

per participant. The correlation gains achieved by using the expectation model (expectation -

null model) were compared to the control distribution of "gains" determined based on the null

models (nullmodeli − nullmodel j; see Figure 2.1).

Figure 2.4 shows that EEG prediction correlations were larger for the expectation signal

than the null-model in both the listening and imagery conditions (Wilcoxon rank sum test;

listening: p = 4.2 · 10−66 , Common language effect size f = 0.77; imagery: p = 3.4 · 10−111

, Common language effect size f = 0.85), with significance at the individual level for 12/21

participants (p < 0.05, FDR-corrected p-values extracted from the null-model distributions).

We did not expect to observe within-subjects significance for all participants as each model was

trained on one condition and therefore half of the data.

The shapes of the TRF kernels shown in Figure 2.5 were qualitatively similar to those de-

picted in Figure 2.2 when regressing the onsets signal. Interestingly, the effect of expectations

(correlation gain) emerged on EEG channels that had little or no sensitivity to the unmodulated

onsets, thus possibly reflecting different cortical generators for the EEG encoding of acoustics

and expectations. In fact, the expectation gain emerged primarily in frontal scalp areas, which

were previously linked with auditory expectations (Opitz et al., 2002; Schönwiesner et al.,

2007; Tillmann et al., 2003). Furthermore, the effect of expectation (correlation gain) had

similar topographical distributions for the listening and imagery conditions (Pearson’s correla-

tion: r = 0.9.). This also suggests that the expectation signal is the same in both cases and

originates from the same source. Figure 2.5 indicates that low frequencies (< 1 Hz) are im-

portant for expectation responses. However, even the analysis of the 1-30 Hz band displays

significant encoding of expectation. Finally, the topographic distributions are similar for each

frequency band, although somewhat weaker for 1-30 Hz.

Using the methodology above, we measured and compared the impact of the IDyOM short-

term model, which relies on music patterns within a piece only, and the long-term model, which

relies on music statistics derived from a large corpus of music not including the present piece

(see the Tools section). First, we found that short-term expectations contribute significantly
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Figure 2.3. Cross-Conditions Analysis. TRF models fit on one condition and were evaluated
on the other one to determine the consistency between conditions. (A) Distribution of the
difference between the onsets model and the null-model prediction of the listening condition
based on raw TRF kernels trained on the imagery condition. Significance was computed using
a Wilcoxon rank sum test to assess that the distributions are above the control distribution. (B)
Distribution of the difference between the onsets model and the null-model prediction of the lis-
tening condition based on inverted TRF kernels trained on the imagery condition. Significance
was computed using a Wilcoxon rank sum test to assess that the distributions are above the con-
trol distribution (p = 10−46). (C) TRF kernels topographies. The TRF kernels are normalized
and extracted at the time where their Global Field Power was maximum to extract the latency
where their responses were the most salient (170 ms for listening and 300 ms for imagery). We
can observe a time-shifted inverted polarity of the responses that have been assessed in (B).
We measured a significant (p = 10−23) correlation of r = 0.9 between the listening and the
imagery-inverted topographic maps. (D) A linear convolution mapping between the listening
and imagery responses was learned, applied to individual listening responses, and resulted in
significant predictions of the imagery EEG using the onsets (p = 10−49).
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Figure 2.4. Robust EEG Encoding of the Expectation Signal. (A) EEG prediction correlations
for the listening and imagery conditions using the expectation TRFs. EEG prediction correla-
tions were significantly above chance in both conditions. (B) EEG prediction correlations at
the individual participant level for the imagery condition. Error bars show the standard error
across trials. Stars indicate significance (p < 0.05). (C) Topographies of the EEG predictions
gain (expectation model - null model). Pearson’s correlation between conditions: r = 0.9.

to the prediction of the EEG signals (listening: p = 1.1 · 10−107, Common language effect size:

f = 0.84; imagery: p = 6.9 · 10−134, Common language effect size: f = 0.88), indicating

that neural signals encode statistics based on the proximal melodic context. To examine and

demonstrate that the long-term model is distinguishable and augments the expectation due to

short-time-scale expectation features, we compared the expectations generated by a combined

short-term + long-term model to one based on expectations from short-term + scrambled long-

term processes (null-model). The resulting distributions shown in Figure 2.6 show a positive

shift for the genuine models compared to the shuffled ones (listening: p = 9.5 · 10−64, Com-

mon language effect size: f = 0.77; imagery: p = 1.2 · 10−63, Common language effect size:

f = 0.77). We then used the same analysis approach on the short-term expectations, showing

that the short-term model captures information not explained by the long-term model (listen-

ing: p = 3.7·10−41, Common language effect size: f = 0.72; imagery: p = 1.2·10−77; Common

language effect size f = 0.79). The topographical distributions of such contributions resemble
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Figure 2.5. EEG Encoding of the Expectation Signal by Frequency Bands (0.01-30 Hz, 0.1-
30 Hz, and 1-30 Hz). (top) Averaged prediction correlations for both the expectation model
and null-models. Significance was computed using a Wilcoxon signed rank test paired by par-
ticipants and averaged by trials and shuffling (∗ ∗ ∗ : p < .0001,∗ : p < 0.05). (middle) TRF
kernels reflect the average neural response on Cz. Shaded error bars show the standard er-
ror across participants. (bottom) Topography of the prediction correlations gain (expectation
model - null-model) over the electrodes.
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those seen with the full expectation signal (the expectation values built by combining long-

and short-term statistics; see Figure 2.4; short-term contribution: listening: r = 0.67, imagery:

r = 0.53; long-term contribution: listening: r = 0.75, imagery: r = 0.70). Furthermore, sim-

ilar topographic patterns were measured for the contributions of short- and long-term models

(listening: r = 0.64; imagery: r = 0.47), suggesting that the neural activity explained by long-

and short-term expectations originates in similar or overlapping brain areas.

Finally, we also examined the extent to which the correlation contribution due to the expec-

tation signal is specifically related to the low-level features of the music signal (pitch, intervals,

reversal in pitch direction, and duration). To do so, we compared the distribution of the cor-

relations when regressing all these low-level features and the expectation signal on one side,

compared to the distribution of the correlations computed when scrambling only the expec-

tation vector (null-model). The difference between the two distributions shown in Figure 2.6

indicated that the expectation signal indeed contributed information beyond that due to the

low-level features (listening: p = 3.8 ·10−155, Common language effect size: f = 0.9; imagery:

p = 7.9 · 10−138, Common language effect size: f = 0.89). All these comparisons lead us

to conclude that the long-term model, learned through exposure to a large corpus of music,

is operable during both the listening and imagery conditions and in addition to the low-level

musical features.

2.2.3.4 ERP Analysis

We conducted an ERP analysis by computing the average neural response in a window of

[-100 ms, 500 ms] around the note-onsets at least 500 ms away from the metronome beats.

The average power in the window of [-50 ms, 0 ms] was subtracted as a baseline. Significance

between listening and imagery responses were computed using a permutation test from the

values distributed by participants and topographic distributions were computed by plotting the

response power over the scalp at specific time latencies. Finally, we also computed averaged

responses for the 20% most expected and 20% less expected notes.

Figure 2.7.A shows that imagined notes elicit negative responses that are similar to the TRF

kernels observed in Figure 2.4. In addition, notes in both listening and imagery conditions

elicited stronger responses on the Cz-electrodes for notes related to low expectation (high sur-

prise) as shown in Figure 2.7.B. This trend, even if not significant here, is consistent with the

TRF analysis and in line with the literature (Di Liberto, Pelofi, Bianco, et al., 2020; Omigie et al.,

2013a). Finally, the topographic distribution of the ERP’s in the two conditions is illustrated

in Figure 2.7.C, highlighting the relative delay and inverted polarity of the imagery relative to

listened responses.
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Figure 2.6. Comparison of the short- and long-term and expectation and low-level fea-
tures. (A) Unique correlation contribution for short-term expectations. These values were
calculated as the EEG prediction correlations with TRF models based on both long- and short-
term expectations, minus the EEG correlations after shuffling the short-term expectation val-
ues. (B) Unique correlation contribution for long-term expectations. Correlation contribution
of the long-term expectation model minus the EEG prediction correlations after shuffling the
long-term expectation values. (C) Unique correlation contribution of the long-term model,
showing that long-term expectations explain EEG variance that is not captured by long-term
expectations. (D) TRF models were fit by combining low-level features (pitch, duration from
the previous note, interval, reversal in pitch direction) were combined with the expectation
vector. The null-model was derived by combining the same low-level features with a scram-
bled expectation vector. (E) The result of the TRF analysis shows that the expectation signal
explains EEG variance that was not captured by the low-level features.
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Figure 2.7. ERP Analysis of Listened and Imagined Notes. (A) Averaged responses for all
notes. Significance between listening and imagery responses was computed using a permuta-
tion test from the values distributed by participants (p < 0.05) (B) Averaged responses for the
20% less and most expected notes in both listening (top) and imagery (bottom) conditions. (C)
Participant-averaged topographic distributions from the ERP of all notes at least 500 ms away
from the metronome.

2.2.3.5 Decoding Imagined Song Identity from the EEG

We tested whether the EEG encoding of note-onset and melodic expectation was sufficiently

robust to reliably classify the song identity on single trials. To do so, EEG recordings were

predicted using the TRF by regressing all four musical stimuli separately. The stimulus leading

to the highest EEG prediction correlation was then selected for each trial (see Material and

Methods section for more details). A null-model was computed by shuffling the songs in order

to estimate the classification chance level.

Figure 2.8 shows significant classification accuracies, following the same trend, for each

individual participant. Significance was computed using a Wilcoxon signed rank test paired by

participants (listening: p < 10−7, common language effect size f = 1.0; imagery: p < 10−7,

common language effect size f = 1.0). Note that statistical significance was determined based

on the null-model performance rather than the theoretical chance level, which instead assumes

infinite data-points (Combrisson & Jerbi, 2015).

2.2.3.6 Cross-Participants Analysis

In order to assess the variability in the neural responses across individuals, we used a leave-

one-participant-out cross-validation technique. Specifically, average TRF models were trained

on all participants but one, which was instead used for evaluation. The goal was to test whether

the neural signals of individual participants were sufficiently consistent and synchronized be-

tween participants to allow for significant EEG predictions.

Figure 2.9 shows that the cross-participants analysis allowed for significant encoding of

expectation. Significance was computed using a Wilcoxon rank sum test between expectation
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Figure 2.8. Piece Classification Accuracy. EEG predictions for note-onsets and melodic expec-
tations were combined to determine which song was being listened to or imagined. The data
are shown for each participant and indicate overall significance. The null-model was calculated
from labels-shuffled data.

gain and control distributions (Listening: p = 1.3 · 10−108, common language effect size f =
0.85; Imagery: p = 8.8 · 10−68, common language effect size f = 0.78). Results were also

significant on 11/21 individual participants for listening and 7/21 participants for imagery.

Significance (p < 0.05) was assessed by comparing the probability of the observed expectation

prediction correlation with the null-model distribution.

This analysis indicates that cortical responses were consistent between participants in both

listening and imagery conditions, meaning that models can be trained and evaluated on differ-

ent participants and that expectation encoding is shared between individuals within the same

sociocultural environment (here professional classical musicians).

2.2.3.7 Comparison with Behavioral Audiation Measures

The literature is rich in behavioral measures of audiation capabilities (Gelding et al., 2015;

Gerhardstein, 2002; A. Halpern, 2015). We specified our analysis on one of these measures: the

Gordon’s Advanced Measure of Music Audiation (AMMA) designed by Edwin Gordon in 1989

to tackle audiation capabilities in musicians in order to tailor musical training and checked

whether this test was correlated with the between-participant variability observed in our data.

Figure 2.10 shows that the onsets gain computed as the improvement of the onsets model

with respect to its respective null-model (labels shuffled) does not significantly correlate with

the AMMA audiation test. This finding suggests that the audiation capability as defined and
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Figure 2.9. Cross-participants analysis. TRF models were fit by combining EEG data from all
participants but one and evaluated on the left-out participant. (A) Distribution of expectation
EEG prediction correlation gains (expectation - null model) during listening were significant
when models were trained on different participants than the one of the evaluation. (B) Distri-
bution of the expectation gain during imagery. The gain is conserved with models trained on
different participants than the one of the evaluation.(C and D) Individual EEG prediction cor-
relations for the listening (C) and imagery (D) conditions. Error bars for null-models indicate
the standard error across shuffles. Stars indicate significance within participants (∗p < 0.05).
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measured by Gordon is something that is not reflected by the neural encoding of acoustics

during imagery. A similar analysis based on the expectation gain instead of the acoustic gain

has been conducted and resulted in similar results.
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Figure 2.10. Correlation of the Onset-Model Gain with the AMMA Audiation Test. (A)
Raw signals are shown in different axis. The Pearson’s correlation computed on these two
signals is r = −0.36. (B) This correlation is not significant as it resulted in a p-value p > 0.05
when looking at the null-distribution built by shuffling the order of participants. We therefore
conclude that the AMMA audiation does not reflect the onsets gain.

2.2.4 Discussion

Neural responses recorded with EEG during musical imagery exhibited detailed temporal

dynamics that reflected the effects of melodic expectations, and a TRF that is delayed and with

an inverted polarity relative to that of responses exhibited during listening. The responses

shared substantial characteristics across individual participants and were also strong and de-
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tailed enough to be robustly and specifically associated with the musical pieces that the partic-

ipants listened to or imagined.

This study demonstrates for the first time that melodic expectation mechanisms are as faith-

fully encoded during imagery as during musical listening. Electroencephalogram (EEG) re-

sponses to segments of music (and other auditory stimuli like speech) typically fluctuate based

on the likelihood of hearing that particular sound within the ongoing sequence: the lower the

probability (or unexpectedness), the more pronounced the EEG expectation response (Di Lib-

erto, Pelofi, Bianco, et al., 2020). Therefore, the discovery that imagined music undergoes

similar modulation to heard music implies insights into the essence and function of musical

expectation in shaping the perceptual markers of our cognitive processes. Comparable to lan-

guage, these expectation mechanisms are employed to delineate musical phrases and discern

grammatical elements that can later serve various cognitive purposes. This notion has been

previously deliberated upon, and multiple studies have underscored the pivotal role of musi-

cal expectations as fundamental elements in diverse cognitive functions, ranging from memory

processes (K. Agres et al., 2018) to the experience of musical pleasure (Gold, Pearce, et al.,

2019). Notably, instances of expectations being met or unmet have been observed to influence

brain activity in regions associated with the reward system (Cheung et al., 2019), particularly

in relation to emotional pleasure (Blood & Zatorre, 2001; Zatorre & Salimpoor, 2013), and the

release of dopamine (Salimpoor et al., 2011). Consequently, it is plausible that imagery elicits

similar emotional responses and pleasure akin to those experienced during active musical lis-

tening due to the analogous encoding of melodic expectations in both scenarios. This elucidates

why musical imagery serves as a versatile platform for music creation and holds considerable

significance in the realm of music education. When Robert Schumann asked his students to

arrive at the point of "hearing music from the page", he suggested that there exists individual

variability in the vividness of imagery, which can be shaped and improved by practice. This

ability can be assessed via behavioral measures (Gelding et al., 2015; Gerhardstein, 2002; A.

Halpern, 2015), and has also been shown to correlate with neural activity in fMRI (A. Halpern,

2015). In fact, it may also reflect language deficits as seen in children with Specific Language

Impairment (SLI) who often exhibit significantly lower scores in behavioral musical imagery

tests, suggesting shared neurodevelopmental deficits (Heaton et al., 2018). Curiously, we did

not find a significant correlation between the strength of the neural encoding of music and the

participants’ audiation scores from the widely-used Gordon’s AMMA audiation test (see Figure

2.10). This can partially be explained by the weak SNR of the EEG signal, as well as by com-

plex aptitudes that are not captured by the AMMA test. Therefore, we still lack an adequate

demonstration of a link between our participants’ ability to imagine and behavioral measures

that can better indicate the cognitive underpinnings of the vividness of their imagery. By ex-

tension, the same lack of evidence applies to language deficits and their potential remediation
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through musical training.

From a system’s perspective, auditory imagery responses can be thought of as "predictive"

responses, induced by top-down processes that normally model how an incoming stimulus is

perceived in the brain, or the perceptual equivalent of the efference copy, often triggered by the

motor system (Ventura et al., 2009). This analogy has inspired numerous studies of auditory

imagery in motor contexts as in covert speech, suggesting that imagined responses can be of

a predictive motor nature (Y. Ding et al., 2019; Tian & Poeppel, 2010; 2012; 2013; Whitford

et al., 2017). In musical imagery, rhythm, in particular, has been closely linked to the activity

of the Supplementary Motor Areas (SMA) and pre-SMA (Bastepe-Gray et al., 2020; Gelding

et al., 2019; A. R. Halpern, 2001; A. R. Halpern & Zatorre, 1999; Herholz et al., 2012; Lima

et al., 2015; 2016; Meister et al., 2004; Zatorre & Halpern, 2005), while notational audiation

(Brodsky et al., 2008) (musical imagery driven by reading music scores) and listening (Pruitt

et al., 2018) have been shown to generate covert excitation of the vocal folds with a neural

signature similar to that observed during musical imagery (Zatorre et al., 1996). This motor-

imagery link also runs in reverse as demonstrated by an ECoG study that reveals strong auditory

responses induced by silent playing of a keyboard (Martin et al., 2017). In conclusion, it is

evident that imagery may well be facilitated by the intimate links that exist between motor and

sensory areas that are normally co-activated in task performance, e.g., vocal-tract and speech

production (Shamma et al., 2020), fingers and piano playing, and vision and reading. This

also makes it difficult experimentally to disentangle the two sources of activity (Zatorre et al.,

2007) since auditory imagery may partially be affected by motor components (A. R. Halpern &

Zatorre, 1999).

Regardless of their origins, imagery responses should be fully considered as top-down pre-

dictive signals, with the most striking evidence in our data being their inverted polarity relative

to the listening responses. Such an inversion facilitates the comparison between bottom-up

sensory activation and its top-down prediction by generating the "error" signal, long postulated

in predictive coding theories to be the critical information that is propagated deep into the brain

(Koster-Hale & Saxe, 2013; Rao & Ballard, 1999). This key observation is explored in detail

in the companion study (Di Liberto et al., 2021), which analyzed the EEG responses evoked

during the pauses or short silences that are naturally interspersed within a musical score. These

responses are analogous to imagery responses in that both lack direct stimuli to evoke them.

The combined findings in the present work and the companion study provide a common frame-

work that remarkably and seamlessly links listened and imagined music perception, and more

broadly, sensory responses and their prediction in the brain.
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2.3 The Music of silence. Part II: Cortical Predictions

during Silent Musical Intervals 4

2.3.1 Introduction

Silence is an essential component of our auditory experience, which serves important com-

municative functions by contributing to expectation, emphasis, and emotional expression. Here

we investigate the neural encoding of silence with electroencephalography (EEG) and music

stimuli.

That perception is underpinned by an interplay of sensory input and endogenous neural

processes and has been a longstanding area for debate (Clark, 2016; den Ouden et al., 2012;

Heeger, 2017; Pouget et al., 2013). Prediction theories (Spratling, 2017) posit that the brain

continuously attempts to predict its upcoming sensory inputs, comparing (subtracting) them

and hence deriving a prediction error (εsur) that is used to improve its internal (prediction)

model of the world. A large body of research has found prediction effects in line with sev-

eral neurophysiological phenomena, such as the magnitude modulation of sensory responses

with their expectation (Kutas & Hillyard, 1980; 1984; Rabovsky et al., 2018), where larger

responses were measured for more unexpected inputs. In auditory neurophysiology, this pre-

diction phenomenon has been extensively investigated using the responses evoked by sound

stimuli (Friederici et al., 1993; Kutas & Federmeier, 2011; Mars et al., 2008; Seer et al., 2016;

Strauss et al., 2013; Sutton et al., 1965). A less common approach involves studying the pre-

dictions in the absence of the acoustic input, i.e., during silence, a strategy that potentially

unveils neural predictive processing and its top-down mechanisms by decoupling it from the

simultaneous bottom-up sensory inputs (Heilbron & Chait, 2018; Walsh et al., 2020).

Vigorous responses to silences have been observed across modalities when a sensory stimu-

lus was strongly expected, for example corresponding to an omission during the rapid isochronous

presentation of tones (Chennu et al., 2016; Joutsiniemi & Hari, 1989; Simson et al., 1976; Yabe

et al., 1997). This finding demonstrated that unexpected silences can elicit robust neural re-

sponses that do not require a concurrent sensory input. However, silence has a much more

pervasive presence in our auditory experience than what can be captured in the stimulus omis-

sion scenario, which is limited to silences occurring in place of highly expected stimuli. In fact,

silence is a fundamental component of the rhythmic structure of music that can correspond to

a wide range of expectation strengths. The regularities of music prompt our brain to build such

expectations, which are accurately estimated by computational models of musical structure

(M. T. Pearce, 2005), allowing us to assess the precise neural encoding of music expectations.

4Authors: Giovanni Di Liberto, Guilhem Marion, Shihab Shamma(Di Liberto et al., 2021)
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While such expectations have been shown to be encoded in the neural responses to notes in

a melody during listening (Di Liberto, Pelofi, Bianco, et al., 2020), little is known about the

neural encoding of internally generated music.

Here we investigate the role of silence on the neural processing of music with EEG recorded

as participants listened to or performed mental imagery of excerpts from Bach chorales. Endoge-

nous and exogenous components of the neural signal are discerned by studying the comparison

between listening and imagery conditions. According to prediction theories, the brain continu-

ously builds predictions of upcoming music notes, with the prediction signal (P) appropriately

modulated by the uncertainty of the prediction (Koelsch et al., 2019). When subtracted from

the sensory response (S), it produces a "surprise" or prediction error signal that is measurable

with EEG (εsur = S − P) (Grisoni et al., 2019; Heilbron & Chait, 2018). In this study, we as-

sumed "S" and "−P" to contribute to the EEG signal as two distinct additive components, where

P mimics S and, conversely, "−P" has inverse polarity compared with S. Under that assump-

tion, encountering silence when a note is plausible would correspond to a measurable EEG

signal reflecting the neural prediction error signal "−P", which depends solely on the predic-

tion signal P as S = 0, thus presenting the inverse polarity of the otherwise dominant sensory

response (Fig. 1; see also (Bendixen et al., 2009; Heilbron & Chait, 2018)). For these reasons,

we hypothesized robust neural correlates to emerge in correspondence with the silent events of

music, reflecting the prediction error "−P" and with magnitude changing with the expectation

strengths.

The music imagery task allowed us to study the neural encoding of music silence further

by investigating endogenous neural components in the absence of sensory responses. In an ac-

companying study (Marion et al., 2021), we have shown robust neural activation correspond-

ing to imagined notes, extending previous work on auditory imagery (A. R. Halpern & Zatorre,

1999; Kraemer et al., 2005; Zhang et al., 2017) by demonstrating that cortical signals encode

melodic expectation during imagery. In the present work, conducted along with Giovanni Di

Liberto and in line with prediction theories, we hypothesized that P is the main source of such

neural activity since S = 0. As such, we anticipated a prediction signal (−P) to emerge in

the EEG responses to both imagined notes and silent events, with inverse polarity relative to

a sensory response. Finally, we anticipated the magnitude of the responses to silent events to

reflect the precise expectation strengths of each music event, which were estimated by means

of a computational model of melodic structure (M. T. Pearce, 2005), as it was demonstrated

for music listening (Di Liberto, Pelofi, Bianco, et al., 2020) and imagery (Marion et al., 2021).
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Figure 2.11. Figure 1. Simplified predictive processing model demonstrating the predictive
processing hypothesis for the perception of melodies. Electroencephalography (EEG) signal
recorded during monophonic music listening was hypothesized to reflect the linear combination
of a sensory evoked-response (S) and a neural prediction signal (P). In line with the predictive
processing framework, we modeled the EEG signal as a combination of the distinct components
S and P; Specifically, as the subtraction S-P or, equivalently, S+ (-P). Having defined P as a signal
reflecting the attempt of our brain to predict the sensory stimulus, we posited P to emulate
S (with |S|>|P|) and to have larger magnitude with stronger expectations (the expectation
strengths are not included in this figure, for simplicity). As such, the S-P signal would become “-
P” when a prediction is possible but no sensory stimulus is present (S=0), producing an overall
EEG signal with inverse polarity compared with the response to a note. In other words, EEG
responses with opposite polarities were expected for events with and without an input sound
(see polarities for events marked in black and green in the figure). After selecting silent events
as the instants where a note was plausible but did not occur (based on IDyOM, see Methods),
the existence and precise dynamics of the prediction signal were assessed: 1) By comparing the
responses to silent events during melody listening, where P could be measured in isolation as
S=0; 2) By studying the neural processing of music during imagery, where P could be isolated
as S=0 for both notes and silent-events; and 3) By separating S and P with a component analysis
method.
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2.3.2 Materials and Methods

2.3.2.1 EEG experiment 1

Data acquisition and experimental paradigm Twenty healthy subjects (10 females, aged

between 23 and 42, M = 29) participated in the EEG experiment. Ten of them were highly

trained musicians with a degree in music and at least ten years of experience, while the other

participants had no musical background. Each subject reported no history of hearing impair-

ment or neurological disorder, provided written informed consent, and was paid for their par-

ticipation. The study was undertaken in accordance with the Declaration of Helsinki and was

approved by the CERES committee of Paris Descartes University (CERES 2013-11). The exper-

iment was carried out in a single session for each participant. EEG data were recorded from 64

electrode positions, digitized at 512 Hz using a BioSemi Active Two system. Audio stimuli were

presented at a sampling rate of 44,100 Hz using Sennheiser HD650 headphones and Presenta-

tion software (http://www.neurobs.com). Testing was carried out at École Normale Supérieure,

in a dark room, and subjects were instructed to maintain visual fixation on a crosshair centered

on the screen and to minimize motor activities while music was presented.

Stimuli and procedure

Stimuli and procedure Monophonic MIDI versions of ten music pieces from Bach’s monodic

instrumental corpus were partitioned into short snippets of approximately 150 seconds. The

selected melodies were originally extracted from violin (partita BWV 1001, presto; BWV 1002,

allemande; BWV 1004, allemande and gigue; BWV 1006, loure and gavotte) and flute (partita

BWV1013 allemande, corrente, sarabande, and bourrée angloise) scores and were synthesized

by using piano sounds with MuseScore 2 software (MuseScore BVBA), each played with a fixed

rate (between 47 and 140 bpm). This was done in order to reduce familiarity for the expert

pianist participants while enhancing their neural response by using their preferred instrument

timbre (Pantev et al., 2001). Each 150s piece, corresponding to an EEG trial, was presented

three times throughout the experiment, adding up to 30 trials that were presented in random

order. At the end of each trial, participants were asked to report on their familiarity to the piece

(from 1: unknown; to 7: know the piece very well). This rating could take into account both

their familiarity with the piece at its first occurrence in the experiment, as well as the build-up

of familiarity across repetitions. Participants reported repeated pieces as more familiar (paired

t-test on the average familiarity ratings for all participants across repetitions: rep2 > rep1, p =
6.9× 10−6; rep3 > rep2, p = 0.003, Bonferroni correction). No significant difference emerged

between musicians and non-musicians on this account (two-sample t-test, p = 0.07, 0.16, 0.19
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for repetitions 1, 2, and 3 respectively; (Di Liberto, Pelofi, Bianco, et al., 2020)).

2.3.2.2 EEG experiment 2

Data acquisition and experimental paradigm Twenty-one healthy subjects (6 females, aged

between 17 and 35, median = 25) participated in the EEG experiment. All participants were

highly trained musicians with a degree in music. Each subject reported no history of hearing

impairment or neurological disorder, provided written informed consent, and was paid for their

participation. The study was undertaken in accordance with the Declaration of Helsinki and

was approved by the CERES committee of Paris Descartes University (CERES 2013-11). The

experiment was carried out in a single session for each participant. EEG data were recorded

from 64 electrode positions and digitized at 2048 Hz using a BioSemi Active Two system. Three

additional electrodes were placed on the upper midline of the neck, the jaw, and the right wrist

to control for motor movements of the tongue, masseter muscle, and forearm fingers extensors

respectively. Audio stimuli were presented at a sampling rate of 44,100 Hz using a Genelec

8010-10w loud speaker and custom Python code. Testing was carried out at École Normale

Supérieure, in a dimmed room. Participants were instructed to minimize motor activities while

performing the task.

The experiment consisted of 88 trials in which participants were asked to either listen or

perform mental imagery of ~35 second melodies from a corpus of Bach chorales (see stimuli

and procedure). The entire stimulus set consisted of four such melodies, with each melody

being presented 11 times per condition (listening and imagery) over the duration of the exper-

iment. The presentation order of the resulting 88 trials was randomized. Participants were

asked to read the music scores placed at the center of the desk during both listening and im-

agery conditions. Participants were provided with the scores before the experiment and asked

to become familiar with the melodies. This pre-exposure to the music material was planned

to maximize the imagery performance. A tactile metronome (Peterson Body Beat Vibe Clip)

marking the start of 100 bpm bars (each 2.4 s) was placed on the left ankle of all participants

to allow them to perform the mental imagery task with high temporal precision. A constant

lag of 35ms was determined during the pilot experiments based on the subjective report on the

participants, who reported that the metronome with lag 0ms was not in sync with the music.

That correction was applied for all participants with the same lag value. Neural data from 0 to

500 ms after each metronome onset were excluded from the main analyses in Figures 2 and

3 to ensure that the results do not reflect tactile responses. The metronome responses were

analyzed separately to assess the dynamics of the tactile response (see Figure 3G). Note that

the EEG response to the metronome reflects a mixture of tactile and auditory responses in the

listening condition.
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Before the experiment, musical imagery skills (or audiation skills) were assessed for every

subject with “The Advanced Measures of Music Audiation” test (AMMA; https://giamusicassessment.com/).

Stimuli and procedure Four melodies were selected from a monophonic MIDI corpus of Bach

chorales (BWV 349, BWV 291, BWV354, BWV 271). All chorales use similar compositional

principles: the composer takes a melody from a Lutheran hymn (cantus firmus) and harmonizes

three lower parts (alto, tenor and bass) accompanying the initial melody on soprano. The

monophonic version of those melodies consists of the canti firmi. Original keys were used. The

four melodies are based on a common grammatical structure and show very similar melodic

and rhythmic patterns. The audio stimuli were synthesized using a Fender Rhodes simulation

software (Neo-Soul Keys) with 100 bpm, each corresponding to the start of a bar (every 2.4

seconds).

2.3.2.3 EEG data preprocessing

Neural data from both experiments were analysed offline using MATLAB software (The

Mathworks Inc). EEG signals were digitally filtered between 1 and 30 Hz using a Butter-

worth zero-phase filter (low- and high-pass filters both with order 2 and implemented with

the function filtfilt), and down-sampled to 64 Hz. EEG channels with a variance exceeding

three times that of the surrounding ones were replaced by an estimate calculated using spher-

ical spline interpolation. Channels were then re-referenced to the average of the 64 channels.

The TRF weights did not qualitatively change when using high-pass filters down to 0.1 Hz.

Low-frequencies below 1 Hz were crucial for the melodic expectations analysis in Figure 5,

which was based on EEG data filtered between 0.1 and 30 Hz (see Marion et al., 2021 for more

extensive analyses on the EEG frequency-band).

2.3.2.4 IDyOM

The Information Dynamics of Music model (IDyOM; (M. T. Pearce, 2005)) is a framework

based on variable-order hidden Markov models. Given a note sequence of a melody, the prob-

ability distribution over every possible note continuation is estimated for every n-gram context

up to a given length k (model order). The distributions for the various orders were combined

according to an entropy-based weighting function (M. T. Pearce, 2005), Section 6.2). Here,

we used an unbounded implementation of IDyOM that builds n-grams using contexts up to the

size of each music piece. In addition, predictions were the result of a combination of long-

and short-term models (LTM and STM respectively), which yields better estimates than either

model alone. The LTM was the result of a pre-training on a large corpus of Western music that

did not include the stimuli presented during the EEG experiment, thus simulating the statistical
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knowledge of a listener that was implicitly acquired after a lifetime of exposure to music. The

STM, on the other hand, is constructed online for each individual music piece that was used in

the EEG experiment.

Our choice of IDyOM was motivated by the empirical support that Markov model-based

frameworks received as a model of human melodic expectation (Omigie et al., 2013b; M. T.

Pearce & Wiggins, 2006; M. T. Pearce et al., 2010; Quiroga-Martinez et al., 2019). Further-

more, a previous study from our laboratory demonstrated robust coupling between the melodic

expectations calculated with this configuration of IDyOM and cortical responses to music (Di

Liberto, Pelofi, Bianco, et al., 2020).

2.3.2.5 Music features

In the present study, we have assessed the coupling between the EEG data and various

features of the music stimuli. The note onset-time information was extracted from the MIDI

files and encoded into time-series marking with an impulse with value one all note onsets

(NT), with length matching that of the corresponding music piece and with the same sampling

frequency as the EEG data (Fig. 2A). We then used IDyOM to identify “silent-events”, i.e.,

time instants without a note, but where a note could have plausibly occurred. IDyOM does

not encode silent events explicitly, so we applied custom changes to the original Lisp code

to extract the information of interest on the silent events without changing the way IDyOM

operates. Specifically, for each note, with a quantization of 1/16th of a bar, IDyOM was used

to search for the time for the next most likely event. The search continued for progressively

longer latencies until the model predicted a note with a high likelihood (>0.3). We called

those instants “silent events”. The procedure was repeated on the silent-event instants, to

predict where the next note would occur by knowing that there was no note where the model

had predicted. This information was then encoded into time-series marking with a unit impulse

each silent-event onset (SIL). Experiment 1 had a total of 23514 notes and 5202 silent events.

In Experiment 2, 1548 notes and 271 silent events were used to fit the TRF in each condition

(listening and imagery). Note that such events co-occurring with the tactile metronome were

excluded. Figures 2C,D, and Figure 3E,F report additional information on the distribution of

notes and silent events in the two experiments.

In order to investigate the cortical processing of note and silence expectations, we estimated

the surprise and entropy values for each individual note of a given music piece by using IDyOM.

Given a note ei, a note sequence e1..n that immediately precedes that note, and an alphabet E

describing the possible onset-time values for the note, surprise S (ei|e1..i−1) refers to the inverse

probability of occurrence of a particular note at a given position in the melody(MacKay, 2003;

M. T. Pearce et al., 2010):
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S (ei|e1..i−1) = log2
1

p (ei|e1..i−1)
.

The entropy in a given melodic context was defined as the Shannon entropy (Shannon,

1948) computed by averaging the surprise over all possible continuations of the note sequence,

as described by E:

H (e1..i−1) =
∑

e ∈ E

p (e|e1..i−1)S (e|e1..i−1) .

In other words, the entropy provides an indication of the uncertainty of the upcoming music

event given the preceding context.

IDyOM simulates implicit melodic learning by estimating the probability distribution of each

upcoming note. This model can operate on multiple viewpoints, meaning that it can capture

the distributions of various properties of music. Here, we focused on the onset time viewpoint.

IDyOM generates predictions of upcoming music events based on what is learned, allowing the

estimation of entropy values for the properties of interest. Each of these features was encoded

into time series by using their values to modulate the amplitude of a note-onset vector. This

resulted in four-time series: surprise and entropy of the onset time for notes (SNT and HNT) and

silences (SSIL and HSIL).

2.3.2.6 Temporal response function analysis (TRF)

A system identification technique was used to compute the channel-specific music-EEG map-

ping for analyzing the EEG signals from both experiments. This method, here referred to as

the temporal response function (TRF; (N. Ding et al., 2014; Lalor et al., 2009a)), uses a reg-

ularized linear regression (Crosse, Di Liberto, Bednar, & Lalor, 2016) to estimate a filter that

optimally describes how the brain transforms a set of stimulus features into the correspond-

ing neural response (forward model; Fig. 2A). Leave-one-out cross-validation (across trials)

was used to assess how well the TRF models could predict unseen data while controlling for

overfitting. Specifically, we implemented a nested-loop cross-validation, with the inner loop

consisting of a leave-one-out cross-validation where TRF models were fit on the training fold

and used to predict the EEG signal of the left-out trial. The purpose of the inner loop was to

determine the optimal regularization parameter (λ ∈ [10-9, 105]) by selecting the one maximiz-

ing the EEG prediction correlation (averaged across all electrodes and validation trials). The

outer loop iterated over each left-out test trial, where the TRF model was fit on all other trials

(using the optimal regularization parameter identified with the inner loop) and the quality of

the model was quantified by calculating the Pearson’s correlation between the preprocessed

recorded signal and its prediction at each scalp electrode.
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The interaction between stimulus and recorded brain responses is not instantaneous, in fact,

a sound stimulus at time t0 affects the brain signals for a certain time-window [t1, t1+twin],
with t1 ≥ 0 and twin > 0. The TRF takes this into account by including multiple time-lags

between stimulus and neural signal, providing us with model weights that can be interpreted

in both space (scalp topographies) and time (music-EEG latencies). The relative long inter-

onset-interval (IOI) between music events (e.g., the most common note duration was 300 ms

in experiment 2) could constitute a challenge for the TRF analysis, which may erroneously

associate a neural response to a note n to the previous note n-1 because of the intrinsic regularity

of music. To overcome this limitation, a broad time-lag window of -300–900 ms was selected

to fit the TRF models, which enabled the regression model to more reliably distinguish the

response to the current and neighboring events.

A univariate forward TRF analysis was used to assess the neural response to music notes and

silent events. TRF models were fit for relating NT and SIL with the EEG signal from experiments

1 and 2. Note that note and silent-event TRFs were fit separately. The temporal dynamics of

the neural response to music were then inferred from the TRF model weights for latencies

that were considered physiologically plausible according to previous work (Di Liberto, Pelofi,

Bianco, et al., 2020; Freitas et al., 2018; Jagiello et al., 2019), as shown in Figures 2B, 3C,

and 3D. A multivariate TRF analysis was also conducted for Experiment 1 by combining NT

and SIL, which allowed us to assess the neural signature corresponding to silent events while

regressing the possible impact of the evoked responses to the preceding notes (Figure 2E).

In Experiment 2, a multivariate TRF analysis was also used to assess the cortical encoding

of melodic surprise for note and silence events separately. Specifically, given either note or

silence events, forward TRF models were fit by representing the stimulus as the concatenation

of the corresponding 1) onset time-vector and 2) entropy time-vector; 3) and surprise time-

vector. Then, the TRF analysis was repeated after shuffling the expectation values (entropy

and surprise) values in the multivariate regressor. Specifically, a random permutation was

applied to shuffle the entropy and surprise values of the events while preserving the onset

time. This allowed for the comparison of the TRF models with shuffled modes with the same

dimensionality but with meaningless melodic expectation values sequences (see the Statistical

analyses subsection for additional details on the permutation analysis). The rationale was that

the inclusion of melodic expectation information improves the EEG prediction correlations only

if the EEG responses to music are modulated by such expectations, a phenomenon that was

already shown for notes (Di Liberto, Pelofi, Bianco, et al., 2020; Marion et al., 2021) but not

for silences.
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2.3.2.7 Multiway canonical correlation analysis (MCCA)

The TRF analysis has some limitations, such as working under the assumption of time-

invariance of the neural responses to notes and silent events. That could be an issue because it

is possible that the responses to silence change depending on its position (e.g., two consecutive

silences). However, ERP analysis makes the same assumption and the high level of noise in the

EEG hampers our ability to study questions on the raw data. We tackled this issue in Experiment

2 with multiway canonical correlation analysis (MCCA), a tool that merges EEG data across

subjects to improve the SNR. MCCA is an extension of canonical correlation analysis (CCA;

Hotelling, 1936) to the case of multiple (> 2) datasets. Given N multichannel datasets Yi with

size T × Ji, 1 ≤ i ≤ N (time x channels), MCCA finds a linear transform Wi (sizes Ji × J0,

where J0 < min(Ji) for 1 ≤ i ≤ N) that, when applied to the corresponding data matrices,

aligns them to common coordinates and reveals shared patterns (de Cheveigné et al. 2018).

These patterns can be derived by summing the transformed data matrices: Y =
∑N

i=1 YiWi. The

columns of matrix Y , which are mutually orthogonal, are referred to as summary components

(SC) (de Cheveigné et al. 2018). The first components are signals that most strongly reflect

the shared information across the several input datasets, thus minimizing subject-specific and

channel-specific noise. Here, these datasets are EEG responses to the same task for 21 subjects.

Note that EEG data were averaged across the 11 repetitions of each musical piece to improve

the SNR before running the MCCA analysis.

This technique allows to extract a “consensus EEG signal” that is more reliable than that of

any subject. This methodology is a better solution than averaging data across subjects which,

in the absence of appropriate co-registration, leads to a loss of information because of topo-

graphical discrepancies. MCCA accommodates such discrepancies without the need for co-

registration. Under the assumption that the EEG responses to music and music imagery share a

similar time course within a homogeneous group of young adults, the MCCA procedure allows

us to extract such common cortical signals from other, more variable aspects of the EEG signals,

such as subject-specific noise. For this reason, our analysis focuses on the first NSC summary

components, which we can consider as spanning the most reliable EEG response to music and

music imagery. NSC was set to the number of components with the largest (5th percentile) corre-

lation with the original EEG data (NSC=10 and NSC=8 for the listening and imagery conditions

respectively). De-noised EEG data were then calculated by inverting the MCCA mapping and

projecting the NSC summary components back to the subject-specific EEG channel space. The

latter procedure allowed us to study the MCCA results in the same space as the TRF results

(EEG channels) and to assess the robustness of the result across participants.

This last step was executed twice. First, de-noised EEG data were calculated by using only

the first summary component which, intuitively, represents the strongest and most correlated
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response across subjects: the sensory response. A second de-noised EEG dataset was calculated

based on the remaining NSC-1 components, which were expected to include the residual sen-

sory response but, importantly, to encode the neural prediction signal. A time-locked average

analysis was conducted on the two resulting signals, allowing us to derive an average response

for notes and silent events for each of the signals (first component and the combination of

the remaining NSC-1 components) and for each condition (listening and imagery). Baseline

correction was not applied for the time-locked average, as the MCCA procedure should have

substantially reduced subject-specific noise (e.g., temporal drifts). As such, we were interested

in assessing the exact average signals corresponding with notes and silent events, including

possible non-zero activity before the event. This also allowed us to more clearly visualize the

potential impact of previous notes on the average signal corresponding with notes or silent

events. Differently from the TRF analysis, the time intervals corresponding to the metronome

response were included in the MCCA procedure, allowing us to extract components related to

the corresponding sensory response.

This analysis was conducted on EEG data that was filtered between 1 and 30 Hz. We also

run the procedure by including frequencies down to 0.1 Hz. However, the separation between

sensory and prediction components was not as clear-cut as in the 1-30 Hz case, as the sensory

response contributed to the first several components.

2.3.2.8 Statistical analyses

Consistent statistical procedures were applied to the datasets from the two experiments.

Linear mixed model analyses were performed when testing for significant effects in the case

of multiple factors over multiple groups. This statistical test was conducted when studying the

TRF results in Figures 3 and the MCCA results in Figure 4, to assess the effects of event-type

(notes and silent-events) and condition (listening and imagery).

Pair-wise comparisons were assessed via the (non-parametric) Wilcoxon signed-rank test.

Correction for multiple comparisons was applied where necessary via the false discovery rate

(FDR) approach. In that case, the q-value is reported i.e. FDR adjuster p-value. This FDR-

corrected Wilcoxon analysis was used when testing the TRF weights for significance in Experi-

ment 1 by comparing each data-point of the TRF global field power with a baseline at latency

zero. The same FDR-corrected analysis was also run when conducting a posthoc analysis on

the TRF weights in Experiment 2 in Figure 3, again with a baseline at latency zero, and in the

lateralization analysis in Figure 5.

A permutation procedure was used to test for a significant neural encoding of melodic ex-

pectations in Experiment 2 (Figure 5). That procedure consisted of re-running 100 times per

participant the forward TRF procedure, each time after random shuffling of the expectation val-
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ues, while preserving the timing information (see the Temporal response function analysis

subsection for further details on the shuffling procedure). A null-distribution of the mean EEG

prediction correlation across participants was estimated with bootstrap resampling to assess

whether melodic expectations improved the EEG prediction correlations. The null-distribution

was composed of N=10000 data-points, each derived by: selecting a random data-point per

subject among the 100 shuffles; averaging the corresponding EEG prediction correlations across

participants; repeating the procedure 10000 times. The uncorrected p-values are reported in

this case, as several p-values were smaller than the sensitivity of the test (p < 10-4). The

100 data-points per participant were also used to estimate a null-distribution to assess the sig-

nificance for individual participants. Note that both the group- and individual-subject-level

analyses were conducted after averaging the EEG prediction correlations across all electrodes.

2.3.3 Results

Neural data were recorded from participants as they alternately performed a music listening

(Experiments 1 and 2) and a music imagery tasks (Experiment 2) based on monophonic piano

melodies from Bach. IDyOMpy (c.f. 3.2) was used to identify silent-events i.e. silent instants

where a note could have plausibly occurred (see Methods). Our analyses aimed at testing the

hypothesis that an endogenous prediction signal emerges in correspondence with silent events.

We parametrized the onset times of notes and silent-events in univariate vectors (NT and SIL

respectively) and related them with the neural data by means of three distinct analysis proce-

dures. In the listening task, the sensory response (S), which was present in NT but not SIL,

was anticipated to account for most of the variance of the EEG responses to melodies. The

residual non-sensory response was instead hypothesized to reflect top-down neural prediction

signals (P). According to the predictive processing framework, P was expected to be measured

in combination with the sensory response in correspondence with notes in the listening con-

dition (S-P) and in isolation in correspondence with notes in the imagery condition and silent

events in both conditions (S=0, -P).

2.3.3.1 Experiment 1: Robust cortical response to silence during music listen-

ing

In the first EEG experiment, twenty healthy participants were instructed to listen to ten

monophonic piano excerpts from Bach’s sonatas and partitas, each repeated three times and

played in random order. The cortical responses to music were assessed by means of a multivari-

ate linear regression framework known as the temporal response function (TRF), which takes

into account the interactions and overlap between a succession of notes. Given a property of
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interest of a sensory stimulus encoded in a time vector, the TRF estimates an optimal linear

transformation of those vectors that minimizes the EEG prediction error (Fig. 2A). The TRF

weights can then be interpreted to assess the spatiotemporal dynamics of the underlying neural

system.

First, the cortical response to music notes was assessed by calculating the TRF between a

time-vector marking note-onsets with value 1 (NT) and the corresponding EEG signal (1-30

Hz). Then, the same procedure was repeated when considering the onset-time of silent-events

(SIL; Fig. 2A). The global field power of TRFNT indicated that three components centered at

about 80, 200, and 400 ms were significantly larger than the baseline at lag 0 ms of sound-EEG

latency (FDR-corrected Wilcoxon tests, q<0.001; NT: significant effects for the time-latencies in

the windows 62.5-250ms and 297-516ms). Instead, only two significant components emerged

for TRFSIL at 200 and 400 ms. The regression weights for TRFNT and TRFSIL are shown in

Figure 2B for a representative electrode (FCz), with the corresponding topographies for all

electrodes. Interestingly, note and silent-event responses showed inverse polarity, showing a

large negative correlation between the two curves (r = -0.946, p = 4.0*10-30) and leading

to significant differences for the three components at 80, 200, and 400 ms (FDR-corrected

Wilcoxon tests, q<0.001; SIL: significant effects for time-latencies in the windows 125-282ms

and 359-484ms).

The large difference between the neural responses to notes and silent-events is likely due

to the absence of auditory stimulation for music silence. As such, TRFSIL was expected to

reflect the effect of top-down predictions, which could include the prediction signal itself as

well as the update of internal priors on the upcoming music event after detecting a silence.

Indeed, the present design comes with a potential confound: TRFSIL could be capturing an

average late response to a previous note. While this risk is minimized by our choice of 10

music stimuli with various tempi, the majority of silent events occurred less than 300ms after

a note (Figure 2C,D). To assess the likely interaction between silent events and the preceding

notes, we conducted a multivariate forward TRF analysis where both the NT and SIL regressors

were used to predict the EEG signal simultaneously. In this context, the NT vector could be seen

as a nuisance regressor when studying TRFSIL and vice versa. The result of this analysis (Figure

2E) indicates that the inclusion of NT as a nuisance regressor does not change the main TRF

result (polarity inversion between TRFNT and TRFSIL, with a large negative correlation between

the two curves: r -0.616, p = 1.6*10-7). Furthermore, the dynamics of TRFSIL did not change

compared to the univariate analysis (Pearson’s r = 0.95, p = 3.3*10-31 between the TRFSIL

curves in the univariate and multivariate TRF analyses), despite a reduction in power over

time-latencies (Wilcoxon tests, p = 3.3*10-11), which reflects the expected smaller magnitude

silent-event neural signals compared with evoked-responses to notes, an effect that is magnified

in the multivariate model as the two neural responses are assessed simultaneously.
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We designed a second experiment aiming at overcoming the limitations of Experiment 1.

The following section describes Experiment 2, whose novel design based on musical imagery

enables the isolation of endogenous neural signatures of both notes and silent-events.

2.3.3.2 Experiment 2: Cortical encoding of music silences during listening

and imagery tasks

A second EEG experiment was conducted on twenty-one expert musicians. In the listening

condition (Fig. 3A), participants were presented with four ~35 s piano melodies from Bach

chorales. In the imagery condition (Fig. 3B), participants were instructed to imagine hearing

the same melodies. Each piece was presented and imagined 11 times, for a total of 88 trials

with random order. A vibrotactile metronome placed on the left ankle marked the beginning

of 100 bpm measures (every 2.4 s) in both conditions, allowing participants to perform the

auditory imagery task with high temporal precision. Therefore, the neural signal was expected

to reflect sensory responses to auditory and tactile sensory inputs for the listening condition

and to the tactile input only for imagery. Neural data within 500 ms from the metronome input

were excluded from the TRF analyses that follow to ensure that the results do not reflect tactile

responses.

First, we replicated the result from Experiment 1 by running a forward TRF analysis on

the EEG data (1-30 Hz) for the listening condition. The TRF weights showed spatiotemporal

dynamics consistent with the previous result, with inverse polarities for NT and SIL (Fig. 3C).

Then, we run the same TRF procedure on the auditory imagery condition. While the investiga-

tion was conducted in a manner consistent with the previous experiment, the analyses largely

focused on the EEG channel FCz, where the main effect (a polarity inversion in the listening

condition) was expected based on the results from Experiment 1. A linear mixed model anal-

ysis indicated significant effects of condition (listening vs. imagery) and regressor (notes vs.

silent-events) on the TRF weights, with a significant interaction effect between condition and

regressor (the dependent variable was the average magnitude of the TRF component at FCz for

the latencies 250 ± 100 ms, condition and regressor were the independent variables and sub-

jects a random intercept; effect of ‘regressor’: estimate = -2538, tStat = -12.4, p = 2.4*10-20;

effect of ‘condition’: estimate = -2746, t = -11.4, p = 1.7*10-18; interaction effect: estimate

= 1307, t = 10.1, p = 6.3*10-16). Post-hoc analysis on the individual TRFs indicated compo-

nents larger than the baseline at latency zero for all conditions (FDR-corrected Wilcoxon tests,

q<0.01; see Methods). Figure 3C shows significant TRF components at FCz in the listening

condition. TRF traces for notes and silent-events were negatively correlated (rNT_LIST,SIL_LIST=
-0.60, p = 7.0*10-5), thus replicating the result from Experiment 1. The result in Figure 3D

indicates, as we showed in part 1 of this study (Marion et al., 2021), robust neural correlates of
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Figure 2.12. Figure 2. Robust cortical response to silence during music listening. (A)
Experiment 1 setup. EEG signal was recorded as participants listened to monophonic piano
music. Univariate vectors were defined that mark with value 1 the onset of either notes (NT)
or silent events (SIL). A system identification procedure based on lagged linear regression was
performed between each vector and the neural signal that minimizes the EEG prediction er-
ror. (B) The regression weights represent the temporal response function (TRF) describing the
coupling of the EEG signal with notes (TRFNT) and silent events (TRFSIL). TRFs at the represen-
tative channel FCz are shown (top), revealing significant differences (FDR corrected Wilcoxon
test, *q < 0.001) between the neural signature of note and silent-event due to inverted po-
larities, as clarified by the topographies of the TRF components (bottom). (C,D) The overall
distribution of time-intervals between notes and between silent-event and the immediately pre-
ceding note. The y-axis indicates the number of occurrences for a given bin of time intervals
when considering all trials. The data shows that a large number of silent events occurred less
than 200ms after a note, implying that, in experiment 1, TRFSIL could have potentially been
affected by the late response to the previous note. (E) The analysis from panel B was re-run by
using multivariate TRF models i.e., considering note and silent-event vectors simultaneously
with multivariate lagged regression to account for possible interaction between the two. The
figure shows the regression weights corresponding to the two regressors at the selected channel
FCz, while the topographies show the regression weights. As for the univariate TRF result, sig-
nificant differences were found between note and silent-event TRFs (FDR corrected Wilcoxon
test, *q < 0.001). TRFNT showed qualitatively more pronounced early TRF components.
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auditory imagery in correspondence of notes. Crucially, the EEG dynamics of auditory imagery

corresponding to silent-events showed shape and latencies comparable to those measured for

imagery of notes (rNT_IMAG,SIL_IMAG = 0.89, p < 1.2*10-13), with the same polarity measured for

silent-events in the listening condition (rSIL_LIST,SIL_IMAG = 0.57, p = 2.1*10-4, rSIL_LIST,NT_IMAG =
0.52, p = 7.4*10-4). Conversely, TRFNT in the listening condition had inverse polarity, which

was consistent with the polarity of tactile responses i.e. the only other sensory response in the

EEG data (see the TRF result for the metronome-only vector in Figure 3G).

The result in Figure 3D indicates that the inverted cortical polarity measured for TRFNT

and TRFSIL during music listening (Figs. 2B and 3C) depends on the presence or absence of a

sensory stimulus respectively, rather than a different encoding of notes and silent-events per se.

In fact, that difference was not present in the imagery condition, where there was no auditory

stimulation. This result is in line with a predictive processing account of auditory perception

whereby the brain constantly attempts to predict sensory signals (Fig. 1). The analyses that

follow aim to provide further support to this result by 1) disentangling sensory and prediction

signals in both the listening and imagery conditions with a methodology that, differently from

the TRF, does not use explicit knowledge of the position of notes and silent events; and by

2) assessing whether the prediction signal encodes the precise melodic expectation values as

estimated by a computational model of musical structure.

2.3.3.3 Disentangling neural sensory responses and neural prediction signal

The TRF analysis showed robust note and silent-event encoding in both listening and im-

agery conditions. However that analysis is oblivious to the differences between responses to

individual events. For example, neural responses change with the listener’s expectation of a

note based on the proximal music context (Di Liberto, Pelofi, Bianco, et al., 2020; Omigie et al.,

2013b). The next two sub-sections investigate the neural signature of individual music events

across the time domain of a musical piece.

Investigating the cortical processing of individual music notes requires an approach that is

effective despite the low SNR of EEG recordings. The TRF procedure in the previous sections

summarizes information across the time domain, providing a summary neural trace for each

participant representing the “typical” response to a note or a silent event. However, that ap-

proach does not provide us with a view at the level of individual events (notes and silences). To

do so, we used multivariate canonical correlation analysis (MCCA), an approach that de-noises

the EEG data by preserving components of the signal that are consistent across participants.

An MCCA analysis was run on EEG data from all participants simultaneously, preserving

the first NSC summary components (SC) with the largest inter-subject correlation (see Meth-

ods). This approach enables the investigation of neural data in the original EEG channel with
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Figure 2.13. Figure 3. Comparable cortical encoding of music silence and note during im-
agery. (A,B) EEG signal were recorded as participants listened to and imagined piano melodies
(Experiment 2). A vibrotactile metronome placed on the left ankle allowed for the precise ex-
ecution of the auditory imagery task. (C) TRFs at the channel FCz (left) and topographies of
the TRF at selected time-latencies (right) are reported for the listening condition. Thick lines
indicate TRF weights that are larger than the baseline at latency zero (FDR corrected Wilcoxon
sign-rank test, q < 0.01). Black asterisks indicate significant differences between NT and SIL
(FDR corrected Wilcoxon sign-rank test, q < 0.01). (D) The TRF results is reported for the
imagery condition, showing a significant component centered at ~300 ms for both note and
silent events with, as hypothesized, no significant difference between NT and SIL, which had
the same polarity in this case. (E,F) The overall distribution of time intervals between notes
and between silent events and the immediately preceding note in Experiment 2. The y-axis in-
dicates the number of occurrences for a given bin of time intervals when considering all trials.
(G) TRFs were fit for the listening and imagery conditions using a univariate stimulus regressor
marking the metronome with unit impulses (and zero at all other time points). TRFs are shown
at the EEG channel FCz. Topographies depicting the TRF weights at all channels are also shown
at the peak of the dominant TRF component.
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remarkably high SNR, allowing us to assess the neural signature of each individual event in a

melody. SC1 was expected to capture the sensory response, which is likely the strongest and

most consistent signal across participants. As we had hypothesized, SC1 showed strong neural

activation corresponding to sensory events i.e. notes and metronome in the listening condi-

tion; and metronome only in the imagery condition (hypothesis in Fig. 1 and result in Fig.

4). That result was visible both at the level of individual music events (Fig. 4A,B) and on the

time-locked average signals (Fig. 4C,D). Next, the first sensory component (SC1) was removed

from the EEG data to study the residual NSC–1 component, which was expected to capture

neural predictions and, therefore, to be active in correspondence with both notes and silent-

events, as depicted in Figure 1. The result in Figure 4 confirms that hypothesis by showing

neural activation for all music events, with negative components corresponding to both notes

and silent-events between about 200 and 400 ms in the imagery conditions. A linear mixed

model analysis confirmed such observations: Significant effects of condition (listening vs. im-

agery) and event-type (notes vs. silent-events) were measured on the time-locked averages

for SC1, with a significant interaction effect between condition and event-type (the dependent

variable was the average magnitude of the time-locked average component at FCz for the la-

tencies 250 ± 100 ms, condition and event-type were the independent variables and subjects

a random intercept; effect of ‘event-type’: estimate = -6.1, tStat = -6.6, p = 4.5*10-9; effect of

‘condition’: estimate = -4.3, t = -4.7, p = 9.5*10-6; interaction effect: estimate = 3.0, t = 5.1,

p = 2.1*10-6). This result is in line with the interpretation of the first component as a sensory

response signal, which is present only for notes in the listening condition. Significant effects

were also measured on the residual NSC–1 component for condition but not event-type nor the

interaction between the two (effect of ‘event-type’: estimate = 3.6, tStat = 1.9, p = 0.058;

effect of ‘condition’: estimate = 4.6, t = 2.5, p = 0.016; interaction effect: estimate = -1.9, t =
-1.6, p = 0.11), which is in line with the interpretation of the residual NSC–1 component as a

prediction signal. Overall, this result is consistent with our initial hypothesis in Figure 1.

2.3.3.4 Cortical encoding of silence expectations during music listening and

imagery

Recent studies indicated that low-frequency neural signals encode melodic expectations

when participants listen to monophonic music (Di Liberto et al., 2020; Omigie et al., 2013).

Specifically, melodic expectations modulate the magnitude of the auditory responses, with

larger neural responses for less expected events. In line with those results and with the hy-

pothesis that cortical responses to music reflect a combination of sensory and prediction signals

(Fig. 1), we anticipated EEG responses to notes and silent events to be modulated by melodic

expectations during both listening and imagery conditions. To test that, we first estimated the
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Figure 2.14. Figure 4. Disentangling sensory and prediction neural signals with unsu-
pervised correlation analysis. Multiway canonical correlation analysis (MCCA) was used on
all EEG data to identify components of the EEG signal that were consistent across subjects.
NSC summary components (SC) with the largest inter-subject correlation were preserved. The
first SC represents the EEG response that is most correlated signal across subjects. Here, we
hypothesized the first SC and the residual NSC-1 SCs to capture sensory and prediction cortical
signals respectively. (A,B) The first SC (top) and to the residual NSC-1 SCs (bottom) were back-
projected onto each participant’s EEG channel space for each condition. The average signals at
the EEG channel FCz were shown for a selected portion of “Melody 4” (brown lines). Vertical
lines mark music events: notes (black dotted lines); silent events (green dashed lines); and
vibrotactile metronome onset (purple dotted lines). Note that sensory responses could exist
only for note and metronome in the listening condition and for metronome only in the imagery
condition. (C,D) First SC (top) and the residual NSC-1 SCs (bottom) at the EEG channel FCz
after time-locked averaging to note and silent-event onsets. Shaded areas indicate the 95% con-
fidence interval calculated across participants.
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expectation of a note with IDyOM (M. T. Pearce, 2005), the model of melodic structure based

on variable-order Markov chains that were also used to identify the silent events. Expectation

values were calculated from the music score based on both a long-term model of Western music

and short-term proximal information on the current piece. As a result, IDyOM provided us with

measures of surprise and Shannon entropy of the onset-time of each upcoming note and silent

event. Surprise informs us how unexpected was a note (or a silent event) at a given time-point

while entropy indicates the uncertainty at a particular position in a melody before the musical

note is observed. Each of these features was encoded into time series by using their values

to modulate the amplitude of note and silent-event onset vectors. This resulted in four time-

series: surprise for notes (SNT) and silent-events (SSIL), entropy for notes (HNT) and silent-events

(HSIL). We then called EXPNT and EXPSIL the concatenation of the surprise, entropy, and onset

vectors for notes and silent events respectively. Note that EXPNT and EXPSIL were calculated by

using timing but not pitch information, as silent events do not have a pitch value.

Forward TRF models were fit to assess the coupling between low-frequency EEG (0.1–30

Hz) and the onset-time expectation vectors. Shuffled versions of the expectation vectors (N

= 100 per subject), with surprise and entropy values randomly permuted while preserving

the temporal information of the event onsets, were used as a baseline for the assessment of

the expectation-EEG encoding. Both EXPNT and EXPSIL could predict the EEG better than their

shuffled versions in both the listening and imagery conditions (EEG prediction correlation was

averaged across all EEG channels; the mean across subjects was compared with a bootstrap re-

sampling distribution of the mean across subjects derived from the shuffled data; N = 10000;

p < 10-4 for notes and silent-events in both conditions; see Methods; Fig. 5A). A signifi-

cant EEG encoding of expectations was also measured at the individual subject level, with

12/21 and 10/21 subjects above chance level in the listening condition for note and silent-event

TRFs respectively, and 10/21 and 17/21 subjects above chance level in the imagery condition

(one-tailed permutation test, N = 100 permutations per subject per condition, q < 0.05, FDR-

correction). While this effect of expectation was assessed on the average of all EEG channels,

Figure 5B shows the topographical distribution of that effect (the contrast between EEG pre-

diction accuracies for expectation and the 95th percentile of the shuffles). Similar but weaker

effects were measured for EEG filtered between 1 and 30 Hz for all conditions but silent events

in the imagined condition (EEG prediction correlation values were averaged across all chan-

nels; the mean value across subjects was compared with a bootstrap resampling distribution of

the mean across subjects derived from the shuffled data; N = 10000; NT, listening: p < 10-4;

SIL, listening: p = 0.021; NT, imagery: p = 0.009; SIL, imagery: p = 0.541).

These results indicate a fine-grained encoding of melodic expectations in the cortical signals

corresponding to music listening and imagery. We also tested whether the effect of onset-time

expectations on the EEG prediction increase showed significant lateralization. We found a
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Figure 2.15. Figure 5. Notes and silence expectation encoding in low-frequency EEG. A
multivariate TRF analysis was conducted to identify the linear transformation that best predicts
low-frequency EEG data (0.1-30 Hz) based on a three-dimensional stimulus representation in-
dicating, for either note or silent-events: event onset-time, entropy at that position, and surprise
of that event. (A) EEG prediction correlations of the TRF using the note or silence expectation
values estimated with IDyOM are compared to a null-model where the EEG prediction correla-
tions were obtained with a TRF that was fit after a random shuffling of the expectation values
(event onset-times were preserved). Results averaged across all electrodes are reported for
both listening and imagery conditions. Each dot indicates the result for a single subject. Sig-
nificant differences were measured for notes and silent events in both conditions (Permutation
test, ***p < 10-4). (B) Topographical maps indicating the EEG prediction correlation increase
(expectation minus null-model) at each EEG channel.

weak left-lateralization effect for notes in the listening condition that, however, did not survive

correction for multiple comparisons (FDR-corrected Wilcoxon test, q = 0.100).

2.3.4 Discussion

Predictive processing explains rhythmic and melodic perception as a continuous attempt

of our brain to anticipate the timing and identity of upcoming music events. While previous

research investigated such predictive mechanisms indirectly by measuring how expectation

modulates sensory responses, this study used neural measurements of music processing in the

absence of sensory input. In particular, we combined, for the first time, low-frequency EEG

measurements corresponding to silent music events during music listening with EEG signals
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Figure 2.16. Figure 6. Computational model for how predictions influence neural signals corre-
sponding to auditory listening and imagery. Auditory inputs elicit bottom-up sensory responses
(S) through the auditory cortex (ACX). A prediction model generates a top-down prediction
signal (P) that is more similar to S for more predictable sensory events. That prediction is com-
pared with S, producing an error signal sur S-P. The EEG response is hypothesized to capture
a combination of sur and S itself, meaning that some level of EEG activation is expected even
when S is fully predictable (Margulis, 2014). When a sound is imagined, S = 0 and therefore
sur -P, as for our hypothesis in Figure 1.

recorded during musical imagery, both in the context of natural melodies. In doing so, we could

demonstrate that robust neural activity consistent with prediction error signals emerges during

the meaningful silence of music and that such neural activity is modulated by the strength

of the music expectations. We propose a unifying perspective on auditory predictions, where

endogenous auditory predictions have a central role in music perception both during listening

and imagery.

EEG encoding of music-silence reveals neural auditory predictions

Existing computational models of music structure, such as IDyOM, generally consider si-

lences as “time intervals without notes” (SOA or IOI) (M. T. Pearce, 2005). However, melodies

contain silent instants where a note could have plausibly occurred. The present study demon-
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strates that the human brain encodes these music silent-events, suggesting that the physiological

validity of those models can be augmented via an explicit account of silent events, rather than

just an implicit encoding of that same information as in IDyOM. The finding that musical im-

agery elicits robust neural activity (Marion et al., 2021; Tibo et al., 2020) laid the foundations

of the present study, providing us with an experiment that allows to discern endogenous neu-

ral processes from exogenous auditory perception mechanisms. Our results are summarized

by the model in Figure 6, in line with the predictive processing framework. The neural en-

coding of sound and silence corresponds to S-P and, as such, to -P when there is no stimulus

(S=0) i.e. silent events during listening and imagery, and notes during imagery. This result

emerged both when using forward TRFs (Crosse, Di Liberto, Bednar, & Lalor, 2016) and MCCA

(de Cheveigné et al., 2019), two methods with different assumptions and rationale. One crucial

difference between the two is that TRFs describe the neural responses for an individual subject

with an impulse response, one for each stimulus feature-set (notes vs silence). Instead, MCCA

does not require any explicit knowledge of the timing and identity of notes and silent events.

This unsupervised approach combined the data from multiple subjects to extract neural com-

ponents that were sensitive to individual events (note or silence) within a continuous music

piece, with a remarkable signal-to-noise ratio. Crucially, the two methods converged to consis-

tent results, revealing that silent events correspond to robust neural responses and that similar

neural signals emerge during imagined notes and silent events. This internally generated “mu-

sic of silence” is in line with a continuous attempt of the brain to predict upcoming plausible

notes. Altogether, this study provides direct evidence for the duality of sensory and prediction

signals posited by the predictive processing framework. Our results suggest that both listening

and auditory imagery entail the transformation of external or imagined sounds by an internal

“predictive model” that encodes our conceptions and expectations of the sound, which is then

compared to the sensory stimulus - if present. The finding, which is captured by the model in

Figure 6, is in line with previous fMRI and PET results on auditory imagery (A. R. Halpern &

Zatorre, 1999; Kraemer et al., 2005; Meister et al., 2004; Zhang et al., 2017). In fact, such

studies showed robust neural activation in correspondence with auditory imagery, as we mea-

sured here with EEG. Crucially, our results linked the neural activation for auditory imagery

to a general predictive mechanism that applies to both listening and imagery. Specifically, the

model in Figure 6 explains both imagery and silence activations as the result of the subtrac-

tion of sensory responses and prediction signals, leading to a change in response polarity when

the sensory input is absent. Indeed, further work with multiple technologies (e.g., fMRI, EEG,

ECoG) is needed to conclusively link our findings with studies based on hemodynamic measure-

ments and test our model. One challenge is to clarify what exactly each neural measurement

can capture within that model. EEG recordings provide us with macroscopic measurements

that are likely to include a variety of neural components. While the evidence points to a strong
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sensitivity to prediction errors (or surprise), there may be additional components that encode

S and P separately.

While the music of silence allows to clearly separate the neural prediction signal from sen-

sory responses, technologies with higher spatial resolution may be able to uncover more precise

details on the neural implementation of this predictive mechanism. One unsolved question re-

gards the possibility that prediction processes could be at the core of the ability to perform

auditory imagery. Based on our finding that prediction processes explain a significant portion

of EEG variance during auditory imagery and that imagined notes and silent events corre-

sponded to similar neural activation, one possibility is that auditory imagery may rely on the

same endogenous prediction mechanisms that are engaged during auditory listening, rather

than involving a separate imagery process. Finally, additional research should be conducted to

investigate possible links between our model and beat perception. In fact, the present design

was optimized for the imagery task, thus working with relatively simple melodies. Experiments

with a broader set of music stimuli are needed to tackle that question, for example by using

syncopated music stimuli, which would allow for a more distinct separation of beat and notes

(Tal et al., 2017).

Silence neural signals are graded by expectations

The TRF analysis in Figure 5 confirmed the hypothesis that low-frequency EEG responses to

naturalistic music encode melodic expectations in correspondence of prospectively predictable

silent events. The responses to silent events were shown to co-vary with the expectation

strengths, which were drawn from a note onset-time statistical model (M. T. Pearce, 2005),

as it was previously shown for music notes (Di Liberto, Pelofi, Bianco, et al., 2020; Omigie

et al., 2013b). These results are in line and go beyond previous measurements of the neural

responses to sensory omissions, which focused on scenarios where strong expectations on the

upcoming occurrence of a stimulus were built artificially (missing stimulus potentials - MSP;

(Bendixen et al., 2009)). Mismatch negativity responses (MMN) to omitted tones were mea-

sured for stimulus onset asynchronies (SOA) up to 150 ms (Yabe et al., 1997), while studies

with longer asynchronies, closer to those of the present study, were shown to elicit MSPs with a

modality-specific (auditory) negativity at about 230ms and a modality independent (both au-

ditory and visual) positivity at 465ms (Joutsiniemi & Hari, 1989; Simson et al., 1976). Silent

events in melodies differ from omissions in that they have a much lower probability of cor-

responding to a sound. Furthermore, omission cannot be predicted, while the participants of

Experiment 2 were pre-exposed to the four melodies and, as such, silent events were not unex-

pected per se. In other words, the participants were certainly not “surprised” in the traditional

sense when they encountered a silent event, as they had heard the melody before. Instead, our

results are different from the “unexpectedness” investigated with sensory omission paradigms

as they reveal prediction errors related to the processing of melodic structure based on the
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melody statistics.

Further work should be conducted to directly explain the overlap and interaction of the two

phenomena. Our finding contributes to that question by suggesting a unifying view linking MSP

(omission response), expectation modulation of sensory responses (EM), and auditory imagery

using naturalistic music listening. Our results suggest that the MSP negativity and EM are the

results of the same prediction process. In addition to providing new direct evidence on the

neural substrate of MSPs, we show that such responses can be measured when the music is

internally generated (imagery). This result is in line with a view of the auditory system where

predictions are simultaneously computed at multiple time scales (e.g. hierarchical predictive

coding) and, crucially, where local expectations (at short time scales) are performed by our

brain even in the presence of exact prior knowledge of the upcoming stimulus (e.g. repetition

of a song; production or imagination of a song). In fact, the TRF analysis in Figure 5 indicates

a robust encoding of melodic expectations even though the stimuli were precisely known by

the participants (only four repeated stimuli were presented and participants were exposed to

the pieces before the start of the EEG experiment).

We contend that the present finding has implications for computational models of sensory

perception. For example, neural signals have been modeled by focusing on evoked responses

(e.g., (Doelling et al., 2019; Ferezou & Deneux, 2017))), thus describing the neural signal as a

sum of fixed-latency sensory evoked responses, while generally ignoring prediction processes.

Instead, as highlighted by this study, prediction signals emerge in correspondence with both

notes and silent events in the neural signal. As in Figure 6, evoked-response models could

be extended by including such prediction mechanisms both in the presence and absence of a

sensory event. The resulting model would describe the S and P duality and would explain

the neural responses to music silence that were measured in the present study. We conclude

that our brain considers silent events as temporally-precise and information-rich events that

provide our brain with valuable information (namely that “a note was not present at a partic-

ular plausible time-point”) contributing to the subsequent predictions. Our results may reflect

a general property of sensory perception and, as such, we expect similar neural responses to

emerge during meaningful silences in other auditory stimuli such as speech. Specifically, “ex-

pectation” signals similar to the predictive melodic expectations in music sequences, have been

demonstrated in the neural responses to phoneme sequences, the fundamental units of speech

(Brodbeck et al., 2018; Di Liberto et al., 2019). Therefore, we anticipate that future studies

may reveal predictive responses that closely resemble those we identified in music “silences”,

but that would reflect the linguistic model of the listener, confirming that the findings of the

current study are indicative of general auditory perception mechanisms.

In summary, the present study shows robust neural signatures of music silence, suggesting

that silent events have great importance in the neural encoding of music. Furthermore, we
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provide evidence that the encoding of silent events reflects a neural prediction signal, with

results that are in line with the predictive processing framework.
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2.4 Cross-Modal Predictions: Sensory Motor Predic-

tions in Speech5

2.4.1 Introduction

Sensorimotor interactions have long been postulated as a fundamental ingredient of the

performance of complex tasks engaging a perceptual system (visual, auditory, or somatosen-

sory) and a concomitant suite of motor actions (reaching, speaking, lifting) (Georg et al., 2012;

Wolpert & Ghahramani, 2000). The conceptual motivations are anchored in control theory

where rapid complex actions can benefit from fast sensory feedback to inform the controllers

of the accuracy of the ongoing performance so as to maintain or correct its course (Daniel et al.,

1995; Roger & W, 1970; Wirthlin et al., 2019). The same rationale and motivations also ap-

ply in purely sensory contexts where the balance between bottom-up stimulus representations

and top-down predictions are postulated to play a key role in stimulus perception (Keller &

Mrsic-Flogel, 2018).

The feedback may take the form of deviations (errors) between the sensory consequences of

ideal target performance and its “prediction", which is computed by extrapolating a “forward"

model of the motor plant. This is how accurate arm reaching is informed by visual and propri-

oceptive cues (S & M, 1997), and how the vocal tract exhibits smooth delivery and executes

rapid corrections of speech from auditory feedback (G, 2012; John & Edward, 2015; Wirthlin

et al., 2019). This predictive function of sensorimotor interactions has even been postulated

to apply in reverse, to explain how robust sensory perception can arise from observing motor

action, e.g. the role of lip-reading in speech comprehension, or in the Motor Theory of Speech

where acoustic features of speech are presumed to be transformed and encoded as articulatory

commands (Alvin et al., 1967; Dominic & Trevor, 2008) (L. Andrew et al., 2009). Finally, these

bidirectional sensorimotor interactions achieve their full generalization in the findings of the

mirror-neuron responses (Anat et al., 2018), which have claimed a causal role not only in all

sensorimotor systems but also in accounts of social function and emotional relations (Marco,

2009). Predictably, these claims have provoked numerous detractions and debates that have

served to enrich and deepen the understanding of these phenomena.

In order to characterize sensorimotor interactions in the human cortical speech system, we

recorded and analyzed the sensorimotor neural interactions with ECoG in humans while they

5Authors: Shihab Shamma, Prachi Patel, Shoutik Mukherjee, Guilhem Marion, Bahar Khalighinejad, Cong Han,
Jose Herrero, Stephan Bickel, Ashesh Mehta, Nima Mesgarani(Shamma et al., 2020)
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spoke, listened, or simulated speaking by moving their vocal tract without producing sound.

The goal was to characterize more accurately the nature of the spectral or temporal representa-

tion of the auditory and motor cortical responses. We also used these responses to re-examine

the basic computational architecture of the sensorimotor interactions with the aim of clarifying

their functional role in action and perception. Figure 2.17.A illustrates the basic reciprocal

sensorimotor projections as would typically be involved in speech production (John & Edward,

2015; Poeppel, 2014). Specifically, during speaking, motor areas control vocal-tract movements

that generate a speech signal. It has also been proposed that the motor cortical areas send a

parallel internal neural copy of the speech signal to the auditory cortex – the forward predic-

tion signal, where it is compared to the responses induced by the incoming speech (Hickok &

Poeppel, 2007). During listening to speech, an inverse mapping from the auditory to the motor

areas would create a motor representation of the acoustic signals (Stephen et al., 2004).

Figure 2.17. Schematic depicts the four types of recordings from all electrodes which are ex-
pected in each subject: Miming (M) responses are when a subject articulates the speech with-
out any sound; Listening (L) responses are from the subject listening passively to the speech;
Speaking (S) signals are recorded while subject articulates audibly the speech; Noise (N) are
recordings of the background noise on the electrodes in silence. The schematic illustrates the
postulated forward and inverse projections between the auditory and motor areas.

Because of this bidirectional flow of interactions between the auditory and motor responsive

regions (L and M in Figure 2.17.A, we shall refer to this phenomenological network as the Mir-

ror Network (or MirrorNet). We shall utilize this framework to explain how ECoG recordings

revealed directly the spectrotemporal nature of the MirrorNet projections: the forward motor

influences into the auditory cortex during silent speaking (or miming), the inverse auditory

influences into the motor areas during listening, and finally the bidirectional influences during

speech production. Two previous studies (C. Gregory et al., 2014; Martin et al., 2017) had
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adopted experimental paradigms analogous to ours. However, the goals, analyses, and conclu-

sions differ fundamentally from those of this study, although they are mutually consistent as

we shall elaborate later.

The findings from our experiments confirmed the basic structure of the auditory-motor

mirror network (Figure 2.17.A), and revealed that the responses of the forward and inverse

projections are spectrotemporally rich enough to allow for relatively accurate representations

of speech. The results also suggest that a key function of the sensorimotor interactions is to

enable the brain to learn how to use the vocal tract for speech production, rather than simply to

control its performance during speaking. In support of this idea, we developed a computational

instantiation of this basic network and used it to train a speech synthesizer to produce speech

from mere exposure to a corpus of speech data, thus demonstrating how complex actions like

speaking or playing piano can be learned through auditory feedback and motor feedforward

signals between the two cortical regions.

2.4.2 Results

2.4.2.1 Neural Data

First, we confirmed the functional projections postulated to exist in the network of senso-

rimotor interactions. Recordings during silent miming (M) revealed measurable responses in

auditory responsive regions, confirming the influence of forward projections from the motor

areas to the auditory-responsive cortex. During pure listening (L) without any motor actions,

significant responses were also measured in the motor areas confirming the existence of an

inverse projection. Finally, responses during speaking (S) were found to be, as previously re-

ported, suppressed relative to the M and L responses in motor and auditory responsive regions,

respectively.

Second, detailed analyses of signals carried by the forward and inverse projections revealed

remarkable spectrotemporal specificity, sufficiently adequate to encode individual sentences.

Thus, during a skilled task like speech production, we conjecture that these auditory-motor

interactions modulate and control auditory and motor responses in detailed and meaningful

ways so as to play a role in the learning and performance of the auditory-motor tasks.

In the experiments and analyses reported here, the forward and inverse activations (M in
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auditory- and L in motor-electrodes) were small because they were measured in the absence

of other background responses due to acoustic or motor stimuli. Consequently, to demonstrate

the meaningful interpretation of these responses, we had to apply diverse methods, e.g., spec-

trogram reconstructions, STRF predictions, and correlation rankings, all with varying degrees

of confidence. But, in the case of speaking, S responses in both auditory- and motor-electrodes

are substantial, and they are strongly modulated by inputs projected from the counter regions.

This was best demonstrated by the large changes between the various average STRFs, e.g., the

changes from L-STRF to S-STRF to M-STRF.

Specifically, STRF changes revealed remarkably different dynamics and patterns of inter-

actions depending on the task, which complement the interpretations gained from the direct

response measurements. For instance, when speaking (S), relatively strong inhibitory influ-

ences are seen in the S-STRFs preceding at the onset of the responses. This timing seems to

coincide with a preceding wave of responses on the M-STRFs. One possible interpretation of

these patterns is that the early M activation reflects responses of local recipient inhibitory in-

terneurons and that these in turn exert their inhibitory influences during speaking when the

evoked auditory responses are sizable. This interpretation is also consistent with the fact that

pure auditory L responses (which presumably supply no motor inputs) do not exhibit either

of the preceding waves of activation in the L-STRFs. On the motor-electrodes, the situation

is somewhat different, receiving an inhibitory wave preceding the L responses (L-STRFs), that

roughly coincides with early activation of the M responses (M-STRF). The S responses which

combine motor and auditory interactions are complex and less punctate, perhaps reflecting the

local interactions between the M and L sources. All these details remain to be addressed in

future analyses that would consider the timing of the interactions (e.g., (Einat & Riikka, 2018;

C. Gregory et al., 2014), and especially on individual localizable electrodes.

Third, the high spatiotemporal resolution of the ECoG allowed us to localize sources and

destinations for the auditory-motor interactions and to reveal their relative timings. The re-

sults on the whole are consistent with findings from global imaging data with fMRI, EEG, and

MEG. For instance, we found that the forward and inverse projections are largely between non-

primary auditory responsive regions such as the STG, PT, versus MTG, ITG on the motor-side.

Non-primary regions are known to be far more plastic and hence susceptible to the effects of

behavioral engagement and learning from experience.
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2.4.2.2 Sensorimotor interactions and learning in the Mirror Network

This experimental study was motivated by two aims concerning the nature of the forward

and inverse projections of the conceptual network presented in Figure 2.17. The first sought

to determine the spectral and temporal nature of the activity conveyed by these projections.

The second was to explore, based on these findings, their functional significance, specifically in

the context of speech production and perception, but more generally in enabling sensorimotor

tasks. We briefly shed light on this second aim via a mathematical model and simulation of

the Mirror Network, which brings out a potentially critical function of the forward projections,

namely in learning the inverse maps needed for control and performance of sensorimotor tasks.

We begin with a redrawing of the network of Figure 2.17, by unfolding the inverse mapping

from the forward as shown in Figure 2.18, referred to henceforth as the MirrorNet. Here the

auditory cortex is depicted twice, as an input and as an output. This organization of the system

is well-known in the neural network literature as an Auto-Encoder, where the input (responses

in the auditory cortex) is mapped onto itself at the output, through two transformations: an En-

coder to a latent (hidden) representation (the motor responsive region here), and then through

a Decoder back to the output (auditory cortex). Normally, such auto-encoder networks are sim-

ply trained by requiring that the Encoder & Decoder projections be able to reproduce the input

with minimum error. In doing so, the auto-encoder finds a new, possibly more compressed

and efficient but equivalent, representation of the auditory input as activations in the hidden

(motor) region, which can still be mapped back to the auditory representations.

In the sensorimotor literature, it has always been assumed that the forward predictive (or

Decoder) projection from the motor to sensory areas serves to monitor task performance and

to provide rapid feedback of errors to ensure accurate motor execution (Daniel & Zoubin,

2000)upport theoretically and experimentally in the purely sensory perceptual domain (Keller

& Mrsic-Flogel, 2018). The formation of this projection in sensorimotor systems is conceptually

straightforward in that it serves as a model of the motor-plant, and hence can be learned by

minimizing the differences (ed ) between the Decoder and vocal-tract outputs as illustrated in

Figure 2.18.A.

The counter inverse projection (or Encoder) serves to map the sensory expectations and

intentions into the necessary motor commands to reproduce them. What is probably less ap-

preciated is how conceptually difficult it is to learn a functioning inverse projection, for without

a large set of predetermined exemplars (training data) to associate sensory signals to the cor-

rect neural motor commands, one has to resort to trial-and-error approaches. In the world of
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classifiers and neural networks, large amounts of training data are key to accurate performance

and generalization to unseen data. But it is often difficult to acquire such training material.

For example, in the case of controlling the vocal-tract, learning to pronounce words of a new

language relies not on finding out what the motor commands ideally need to be (which is im-

possible!), but rather on listening to our pronunciation of the words and trying to map the

perceived errors (ec) back to implicit corrections of the motor commands. In the top panel of

Figure 2.18.B, we illustrate that this backward propagation of the error to the motor areas re-

quires conceptually that we compute the inverse of the vocal-tract so as to translate the sensory

errors into motor-command adjustments, which subsequently can be minimized by adjusting

the inverse mapping. In general, computing the vocal-tract inverse is difficult if not impossible

because of its complexity, nonlinearity, and our incomplete knowledge of its workings.

The MirrorNet in Figure 2.18.B (bottom panel) solves this problem by adding a forward

projection that parallels and serves as a model of the vocal-tract. The critical value of this

“neural" projection is that it can readily provide a route for the ec errors to backpropagate to

the motor areas, and subsequently to train the inverse mapping. Figure 2.18.C illustrates a

schematic of the resulting auto-encoder network, which like other neural networks, learns its

connectivity by backpropagating the error (e.g., ec) through its “neural" pathways from stage

to stage, adjusting the weights as the error proceeds backwards. This MirrorNet learns its

Decoder weights by minimizing ed as discussed earlier, but also learns its Encoder the same

way, by backpropagating to minimize ec through the Decoder neural pathway. Without this

Decoder forward projection, the Encoder inverse mapping cannot be readily learned in this way

since the error ec has no route to propagate backwards through the motor-plant.

This leads us to the conclusion, that a crucial role played by the forward projection is to

provide a pathway to learn the inverse mapping in an unsupervised way, and without any need

for explicit motor training data. That is, by simply listening and uttering the words, the errors

are automatically used to guide the vocal tract to reach its sensory target.

2.4.2.3 Simulating learning in the MirrorNet

A brief demonstration of “unsupervised" learning in the MirrorNet is provided here to il-

lustrate the critical role of the forward projection in facilitating the learning of the inverse

mapping. The network modules shown in Figure 2.18.C are implemented in PyTorch as a

convolutional autoencoder to model the Encoder and Decoder pathways (see(Shamma et al.,

2020) for details). For the (input and output) auditory representations, we computed the audi-
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Figure 2.18. Simulating learning in the Mirror Network. (A). The overall layout of the sen-
sorimotor interactions. It emphasizes the relative contributions of the inverse (Encoder) and
forward (Decoder) projections between the auditory and motor areas. The overall network
resembles a classic auto-encoder network that maps the auditory cortex activity onto itself
through a hidden layer (motor regions), but with an additional non-neural motor-plant (vocal-
tract) pathway that shares with the forward projection its motor input and auditory output.
Two sources of error are available to train the neural pathways of the Encoder (ec) and De-
coder (ed). (B) The critical role of the forward projection in providing a neural pathway for
the (ec) error to backpropagate to the motor regions (hidden layers) so as to train the Encoder
weights. (C) The MirrorNet implementation employs multiple layers of a convolutional neu-
ral network, and the “World” synthesizer as a simplified model of the vocal tract. (D) Training
the MirrorNet results in progressive improvements in the reconstructed spectrograms projected
through the sequence of Encoder–Decoder layers. The training is rather limited here involving
only about 40 min of speech beyond the initialization with the random patterns.

tory spectrogram, a representation mimicking the cochlear outputs (Nima et al., 2006; Taishih

et al., 2005). The vocal-tract model was simulated by the “World" synthesizer (Masanori et al.,

2016), a widely-used tractable vocoder model that takes three sets of input parameters as a

function of time to synthesize a speech waveform: a spectral envelope function (SP), a pitch

track (F0), and voicing/non-voicing indicator signals (AP). The goal of the MirrorNet here was

to iteratively learn the Encoder weights (starting from random initial values) that map any (in-

put) auditory spectrogram to the “motor" parameters that would both (1) reproduce the same

spectrogram through the “World" synthesizer, and also (2) simultaneously regenerate it at the

output of the Decoder projection, in which case both errors ed and ec are minimized.

The network was implemented with random initial weights for the Encoder and Decoder,

and was fully trained using < 60 minutes of speech. Two important procedures speeded up
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and guided the learning of the correct mappings: (1) an initializing training epoch in which

the network was briefly trained to minimize only ed using random synthesizer-like parameters

SP, AP, and F0. This epoch guided the Decoder to begin to reproduce the same type of output

spectrograms as the synthesizer does, even if the input activations (in the hidden layer) were

random. (2) Following the initialization step, speech spectrograms were used as auditory acti-

vations to minimize ed and ec alternately, i.e., with epochs in which only ed is minimized while

the Encoder is fixed, followed by epochs when the Decoder weights were fixed while the error

ec was backpropagated to compute the corresponding perturbations in the hidden layer, and

subsequently make the necessary Encoder weight adjustments. These procedures succeeded

in training the MirrorNet in an unsupervised manner and with normal speech material, thus

demonstrating the utility of the forward pathway in learning the task of driving the synthe-

sizer. Figure 2.18.D illustrates how reconstruction errors decreased over training epochs, and

the evident improvement in the quality of the reconstructed speech spectrograms of an unseen

sample sentence over time. Further technical details of constructing and training this neural

network are given in (Shamma et al., 2020).

Once the network was trained, it could readily inverse-map its sensory inputs (speech in this

case) to the necessary parameters that drive the associated motor-plant (vocal-tract). Further-

more, the forward projection could still participate in its other commonly proposed predictive

and control roles as a model of the motor-plant. The MirrorNet structure therefore is suffi-

ciently general to serve as a model for analogous sensorimotor tasks requiring learning of a

skilled performance, like playing a musical instrument, reading and writing, or training an

autonomous vehicle to navigate traffic.

Speech production and comprehension

The experimental findings that justified the functional role of direct interactions between

sensory percepts and motor acts are extremely diverse, beginning with the notion that a corol-

lary discharge can function as a filter that suppresses self-generated sensory input allowing

the animal to remain sensitive to external stimulation (Poulet et al., 2006), to stabilize visual

receptive fields by predicting saccade targets (Marc & Robert, 2002), to suppress auditory cor-

tical activity during locomotion (Anders et al., 2013; David et al., 2014), or to facilitate vocal

learning in birds (Georg & Hr, 2009; J et al., 2008). Aside from the corollary discharge, or the

forward projection common to all these examples, there are fundamental differences among

them. For instance, all except for the last example, are due to instinctive processes that are

not learned the way it is with the projections in birds learning a vocal repertoire. So, we shall

distinguish and refer in our commentary here only to skillful continuous sensorimotor actions
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requiring extensive practice such as the control of the vocal-tract in speech production or of

the hand and fingers in musical playing. Hence, neither of these sensorimotor interactions

are expected to exist with untrained motion or inappropriate sounds, as was demonstrated for

speech and vocal tract production in (C. Gregory et al., 2014).

At the phenomenological level that we adopt in this study, vocal learning in birds bears

a close resemblance to the basic structure of human vocal-tract control and learning (Fig.1A).

I physiological single-unit recordings in birds have unambiguously established the analog of

the forward pathway, that it likely generates a detailed spectrotemporal representation of the

stimulus which mimics that received from the ear during vocalizations (J et al., 2008), and

that this in turn would allow the bird to compare them and minimize the difference, and hence

learn how to control its vocal source (Georg & Hr, 2009). Even the hypothesized induction

of auditory responses with silent “chirping" seems to have been mentioned in passing many

decades ago (Williams and Nottebohn, 1985)! All these details are reminiscent of the two

directional projections and minimization of errors ed and ec depicted in Figure 2.18.

Speech production models vary considerably in their levels of description and detail. Some

have focused on analytical formulations of the processes needed to control vocal-tract dynam-

ics in speech production (Jason et al., 2008; John & Edward, 2015; Parrell et al., 2019). Others

provided descriptions that encompass large regions of the brain combining both speech produc-

tion and comprehension, and postulating specific bilateral neural substrates and connectivity

patterns among them (C. Gregory et al., 2014; Hickok & Poeppel, 2007; Poeppel, 2014; Poeppel

et al., 2012). Anatomically grounded accounts have also emerged from imaging experiments

with fMRI and EEG that have emphasized the overall bidirectional flow of information across

motor and sensory regions, and that have attempted to situate these processes within the over-

all flow of information from the auditory to the prefrontal cortex (Josef & Sophie, 2009; Lima

et al., 2016). The study by (C. Gregory et al., 2014) comes closest to our experimental method-

ology in its recordings of responses in the M, L, and S conditions in similarly-defined auditory-

and motor-electrodes. However, all their analyses had concentrated on the strong overt audi-

tory and motor responses and the S-responses, and not as we do, on the covert activations due

to the forward-and inverse-projections that are also evident in their data (e.g., their Fig. 2d

displays weak AUD (green) and PROD (blue) responses during opposite conditions).

By contrast, the MirrorNet schematic that frames our experiments and motivates

the data analyses is strictly phenomenological in flavor. Thus, while the postulated processes

and interactions are biologically-plausible and supported by experimental evidence, the net-

work model is largely agnostic with respect to the specific anatomical regions that source or

receive the forward and inverse projections, or the biological implementations of the error sig-

nals, or how they might be backpropagated to adjust the weights and learn the projections.

The network, however, makes specific predictions that intersect and potentially impact other
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proposed formulations. For instance, the sensorimotor inputs into the auditory and motor cor-

tical regions are evidently rapid, with dynamics that are commensurate with those of speech

and the movements of the vocal tract. Furthermore, they are encoded in a manner consistent

with the representational-domain of the recipient region, i.e., the forward-projection are audi-

tory, and the inverse-projections are motor (Fig. 6A). The projections are also likely to be quite

adaptive so as to learn (forward) and control (inverse) the specific structure of a person’s vocal-

tract (John & Michael, 2002). Hence, these properties are consistent the finding that the most

auditory- and motor-electrodes implicated in the sensorimotor projections were localized in

secondary (auditory) areas like the STG and PT (Figs. 5), and non-primary motor areas. These

auditory responsive regions are highly adaptive, task-dependent, but are also spectrotempo-

rally rich and agile to allow for reliable speech representation (Nima et al., 2014), properties

that are consistent with the MirrorNet requirements.

The framework of the MirrorNet is quite general and can serve many contexts outside

of speech production and the vocal-tract. Any highly practiced actions associated with the

reception or production of sensory signals would be served well by such a network as a means

for controlling the motor-plant and learning its commands. For instance, sign-language and lip-

reading are identical to speech production and perception in the context of the MirrorNet, but

with visual and proprioceptive signals replacing the auditory, and hands, arms, or lips replacing

the vocal-tract. Another example is playing the violin which involves extensive training of the

fingers, arms, and postural musculature – the motor-plant – to produce the music. Forward

projections must learn gradually with practice to model this motor-plant. Simultaneously, the

inverse projection adapts to map the desired music into motor commands, and the learning

thus proceeds by minimizing the two errors (Fig. 6A). Therefore, the MirrorNet structure

predicts that these projections are highly specific to the skilled task that trained them, and

hence their activations would not be recruited by inappropriate actions and sensory signals,

as was demonstrated by the speech selectivity reported for vocal-tract activations (C. Gregory

et al., 2014).

In fact, MirrorNet interactions need not involve a motor task or motor-plant at all, but rather

any constrained transformation that is not significantly amenable to adaptation. For instance,

reading or sounding out a text is a transformation of a visual image (text) into corresponding

sounds, often with complex rules of phonation (analogous to the complex rules of moving the

vocal-tract) (Slowiaczek et al,1980). The forward projection would gradually learn the rules

for mapping text to sounds, and in time, sound becomes an “imagined" output or the meaning

of the text. The inverse mapping from the sound provides the image of the “expected" text –

an imaginary writing task. These designations of course can be altered to describe learning to

write or draw from a visual or an auditory image.

Therefore, the key idea common to all the above scenarios is an auto-encoder network
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with forward and inverse mappings (Fig. 6A), which is the essence of the idea of the “mirror

neurons". However, many extraneous issues have been appended to this network that are not

an essential part of its function and that has led to numerous criticisms (L. Andrew et al., 2009;

H. Gregory, 2014). For instance, the inverse mapping has often been invoked as a realization

of the “Motor Theory of Speech", the idea that speech perception occurs in the “motor domain"

of the vocal-tract. Of course, nothing in the MirrorNet remotely suggests this. The purpose of

the inverse mapping is not to perceive speech, but simply to control the vocal-tract. It is quite

possible that speech perception and comprehension occurs in the auditory cortex, or in other

derivative pathways, and this would still leave the MirrorNet architecture as an essential scheme

for controlling the vocal-tract. Similar arguments apply to the role of the forward projection,

which has been widely assumed to provide a predictive signal (the “efference copy") to facilitate

control of motor performance (Daniel et al., 1995), or to provide a sensory goal rather than

a precise prediction (Caroline et al., 2013). However, it is also possible to argue that this

projection serves primarily as a route for the backpropagation of the error needed to learn the

inverse mapping, without which it is difficult to control the vocal-tract. Therefore, the mirror

neurons can serve an important function, but that does not need to include the “higher-level"

cognitive tasks ascribed to them, from speech comprehension to empathy.

Finally, the architecture of the MirrorNet has been invoked in many perceptual con-

texts since it lends itself to many functional interpretations. One common case in point is as

a substrate for imagination, i.e., sensory percepts devoid of external stimuli or actions without

actual movements (Tian et al., 2016). In the MirrorNet, the forward projection of a skilled

pianist can recapitulate musical percepts by simply moving her fingers appropriately without

actually producing a physical sound (Martin et al, 2018). In fact, as mentioned earlier, Martin’s

study had already demonstrated that the “imagined" activity, which is experimentally similar

to our M responses, exhibited detailed spectrotemporal structure much like the L responses.

Similarly, the urge to dance or tap when listening to a beat or a melody can also be interpreted

as commands injected from a trained inverse pathway into the appropriate motor areas. Such

imagination can be recast as an expectation, anticipation, or prediction of sensory stimuli from

a contextual memory or motor areas, and hence may serve a preparatory function (P. Andrew

et al., 2020). In fact, this view is consistent with Cogan et al.’s (2014) findings of sensori-

motor transformations where auditory-responses were shaped by subsequent, hence expected

vocal-tract actions. The MirrorNet, therefore, can be seen as a unifying architecture that can

harmoniously organize diverse perceptual processes and sensorimotor tasks.
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2.5 Cross-Modal Predictions: A New Computational

Model for Sensory Motor Predictions in Music6

2.5.1 Introduction
Most organisms function by coordinating and integrating sensory signals with motor actions

to survive and accomplish their desired tasks. For instance, visual and auditory signals guide

animals to navigate their surroundings (Keller et al., 2012; Wolpert & Ghahramani, 2000).

Similarly, auditory and proprioceptive percepts are essential in skilled tasks like playing the

piano or speaking. The difficulty of learning to perform these tasks is enormous. It stems from

the fact that to control such actions, one needs harmoniously to close the loop between sensing

and action. That is, it is necessary to map the desired sensory signals to the correct commands,

which in turn produce exactly the desired sensory signals when executed.

But to learn the necessary mappings and interactions between the perception and action

domains, standard Artificial Intelligence (AI) methodology typically relies on creating large

databases that map the input sensory data to their corresponding actions, and then train in-

tervening Deep Neural Networks (DNN) to associate the two domains (Fu et al., 2019; Tai

& Liu, 2016). Humans and animals however never learn complex tasks in this way. For in-

stance, human infants learn to speak by first going through a “babbling” stage as they learn the

“feel” or the range and limitations of their articulatory commands. They also listen carefully to

the speech around them, initially implicitly learning it without necessarily producing any of it.

When infants are ready to learn to speak, they utter incomplete malformed replica of the speech

they hear. They also sense these errors (unsupervised) or are told about them (supervised) and

proceed to adapt the articulatory commands to minimize the errors and slowly converge on

the desired auditory signal. In other words, learning these complex sensorimotor mappings

proceeds simultaneously and often in an unsupervised manner by listening and speaking all at

once (Kuhl, 2004; Pagliarini et al., 2021; Shamma et al., 2020).

Motivated by such learning of complex sensorimotor tasks, a new autoencoder architec-

ture, referred to as the “Mirror Network” (or MirrorNet) was recently proposed in Shamma et

al. (Shamma et al., 2020). The essence of this biologically motivated algorithm is the bidirec-

tional flow of interactions (‘forward’ and ‘inverse’ mappings) between the auditory and motor

responsive regions, coupled to the constraints imposed simultaneously by the actual motor

plant to be controlled. In this study, conducted with Yashish Maduwantha, we extend and

demonstrate the efficacy of the MirrorNet architecture in learning audio synthesizer controls/-
parameters to synthesize a melody of notes using a commercial, widely available synthesizer

6Authors: Yashish M. Siriwardena, Guilhem Marion, Shihab Shamma(Siriwardena et al., 2022)
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(DIVA) developed by U-He1.

MirrorNet is fundamentally different from the Differentiable Digital Signal Processing (DDSP)

based models (Engel, Hantrakul, et al., 2020; Engel, Swavely, et al., 2020) which effectively

learn a differentiable music synthesizer, whereas the goal of the MirrorNet is to learn controls

to drive a given non-differentiable, off-the-shelf music synthesizer. Previous work with DNNs

on determining music and speech synthesizer controls are all based on at least partially su-

pervised techniques which often involve large databases of audio and control parameter pairs

(order of 1000s) (Esling et al., 2020; Georges et al., 2021; Le Vaillant et al., 2021; Yee-King

et al., 2018). Furthermore, previous efforts have mostly demonstrated the ability to compute

the controls for single notes or single vowels for speech (Esling et al., 2020; Saha & Fels, 2020).

In this study, we propose an alternative approach model which is fundamentally unsupervised,

in that it does not require matched pairs of input melodies and their corresponding control

parameters. The proposed model can predict synthesizer controls for a melody composed of

several notes demonstrating the scalability of the model for real-world applications. The true

potential of the MirrorNet is further validated by showing how well it can predict synthesizer

controls not only for DIVA-generated melodies but for other off-the-shelf synthesizer-generated

melodies.

2.5.2 MirrorNet Model

2.5.2.1 Model Architecture

The MirrorNet was initially proposed as a model for learning to control the vocal tract and

is based on an autoencoder architecture. The structure of this network is shown in Figure 2.19a

(Shamma et al., 2020), depicting the biological structures and experiments that motivated the

network. The goal of the model is to learn two neural projections, an inverse mapping from the

auditory representation to motor parameters (Encoder) and a forward mapping from the motor

parameters to the auditory representation (Decoder). For simplicity, we use auditory spectro-

grams (Wang & Shamma, 1994) generated from the audio streams as the input and output

representations, but other representations may prove more versatile (e.g., cortical represen-

tations (Chi et al., 2005)). The “motor” parameters in this study are the parameters needed

to synthesize the closest possible audio signals matching the inputs. The primary difference

between this MirrorNet and the previously studied model in (Shamma et al., 2020) is the use

of the music synthesizer (DIVA) with its unique set of parameters.

As shown in Figure 2.19a, the MirrorNet model is optimized simultaneously with two loss

functions namely the ‘encoder loss’(ec) and the ‘decoder loss’(ed). The encoder loss is the typical

autoencoder loss - the Mean Squared Error (MSE) between the input auditory spectrogram and

1https://u-he.com/products/diva/
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the reconstructed auditory spectrogram from the decoder (forward path). The decoder loss is

the MSE between the auditory spectrograms generated by the DIVA (the motor plant path) and

the decoder (forward path). It is the ‘decoder loss’ that constrains the latent space to converge

to the expected control parameters while simultaneously reducing (ec), and this is the key

feature of the MirrorNet architecture.

Figure 2.19b shows the role of the ‘forward’ path in the model, namely to back-propagate the

errors computed to learn the ‘inverse’ mapping and hence the control parameters. In general,

directly computing a vocal tract or an audio synthesizer inverse is difficult if not impossible

because of its complexity, nonlinearity, and our incomplete knowledge of its workings. The

MirrorNet in Figure 2.19b (bottom panel) solves this problem by adding the forward projection

that serves as a parallel, “neural” model of the vocal tract of the audio synthesizer, or any motor

plant to be used. The critical importance of this “neural” projection is that it readily provides a

route for the ec errors to back-propagate to the motor areas (latent space), enabling the training

of the inverse mapping (Encoder).

2.5.2.2 Model Implementation and Training

The MirrorNet for audio synthesizer control is implemented in PyTorch with 1-D convolu-

tional (CNN) layers modeling both the encoder and decoder. The complete network is inspired

by the multilayered Temporal Convolution Network (TCN) (Lea et al., 2017). Figure 2.20 shows

the complete DNN model architecture with its sub-modules used for pre/post-processing and

dilated TCN. The pre/post-processing modules are symmetrically matched (C1≡C12, C2≡C11,

C3≡C10) and have 128, 256, and 256 filters respectively with 1×1 kernels. d1, d2, and d3

dilated CNN layers have a kernel size of 3 with 1,4 and 16 dilation rates respectively. The

CNN layers in the encoder and decoder are also symmetrically matched and the C4, C5, and

C6 layers have 256, 128, and 7 filters respectively with 1×1 kernels. The latent space dimen-

sions are chosen to match the number of parameters to be learned and the number of notes

in each melodic segment. For example, to learn 7 controls of the DIVA synthesizer to generate

a melodic segment of 5 notes, we use a latent space of (7×5) dimensions. Average pooling is

done after C4, C5, and C6 layers (window sizes of 5, 5 and 2 respectively) while upsampling

is done before C7, C8, and C9 layers (window sizes of 2, 5, and 5 respectively). The auditory

spectrograms used as inputs (and outputs) of the model are of dimension (128×250). We use

auditory spectrograms which have a logarithmic frequency scale, simply because they provide

a unified multi-resolution representation of the spectral and temporal features likely critical in

the perception of sound (Chi et al., 2005; Wang & Shamma, 1994).

Unlike a regular autoencoder, the MirrorNet is trained in two alternating stages in each

iteration. The decoder is trained first (to minimize ed) for a chosen number of epochs. Then,

the encoder is trained (to minimize ec) for a given number of epochs and this alternation of
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(a) MirrorNet: Autoencoder Architecture

(b) Role of the forward pass
Figure 2.19. MirrorNet Model Architecture for speech and the critical role of the forward pro-
jection (taken from Learning Speech Production and Perception through Sensorimotor Interaction
by Shamma et al. in Cerebral Cortex Communications.)

training is continued until both losses converge to a minimum. Learning rates of 1e-2 and 1e-3

were used for the encoder and decoder networks, respectively. The best learning rates were

determined based on a grid search testing all the combinations from [1e-2, 1e-3, 1e-4, 3e-4]
for both the encoder and decoder which resulted in the lowest training errors at convergence.

The two objective functions were optimized using the ADAM optimizer with an ‘ExponentialLR’

learning rate scheduler and a decay (gamma) of 0.5. All the models were trained using NVIDIA

Quadro P6000 GPUs and on average the models converged after around 32 hours of training.

For further implementation information on the network, the PyTorch project is publicly avail-

able in GitHub 2. Sample audio reconstructions can also be found in the supporting web page

hosted in the GitHub repository.

2.5.2.3 DIVA audio synthesizer

We use DIVA, an off-the-shelf commercial synthesizer as our audio synthesizer for the Mir-

rorNet model. DIVA has almost all its parameters MIDI-controlled. A python library called

RenderMan 3 is used to batch-generate audio files using a fixed set of parameters. We built a

software layer with RenderMan to drive DIVA to synthesize a melody of notes by concatenating

individual notes synthesized by DIVA. All the melodies used in this study are 2 seconds long

and sampled at 44.1 kHz. The parameters are all continuous and normalized between [0,1].
Table 2.1 lists the set of parameters selected for the learning experiments with the MirrorNet,

and the corresponding parameter labels from DIVA where applicable.

2https://github.com/Yashish92/MirrorNet-for-Audio-synthesizer-controls
3https://github.com/fedden/RenderMan
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Figure 2.20. DNN architecture of the MirrorNet model. Here C1-C12 represent 1D-CNN layers
where d1-d3 represent 1D dilated CNN layers.

Table 2.1. Set of Audio controls/parameters used. Here MIDI note and MIDI duration are
parameters set in RenderMan library to drive the synthesizer patch.

Parameter Name DIVA preset
MIDI note (Pitch) -
MIDI duration -
Volume OSC : Volume2
Band pass filter (center frequency) VCF1: Frequency
Filter Resonance VCF1: Resonance
Envelope Attack ENV1: Attack
Envelope Decay ENV1: Decay
Vibrato Rate LFO1: Rate
Vibrato Intensity OSC : Vibrato
Vibrato Phase LFO1: Phase

2.5.3 Experiments and Results

2.5.3.1 Learning DIVA parameters from melodies synthesized with the same

set of parameters (set 1)

In this first experiment, we use 400 melodies (set 1) to train the MirrorNet and test with 80

melodies, all originally synthesized by DIVA. The advantage of this set of melodies is that we

have its ground-truth parameter values, and hence we can assess how accurately the MirrorNet

rediscovers them and reconstructs the melodies. Each melody contains 5 notes and is 2 seconds

long. The train and test set of melodies were synthesized by randomly sampling a total of 7

parameters (the first 7 parameters in Table 2.1) using a defined range and keeping a pre-

defined set of other parameters constant across all notes and melodies. The pre-defined set of

parameters used for the experiments can be found in the GitHub repository of the project.
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Figure 2.21. Auditory spectrograms from the model learned with DIVA synthesized melodies
(set 1). (a) Input melody (b) Decoder output from true DIVA parameters (c) Final output from
the decoder (d) DIVA output from the learned control parameters

Figure 2.21 depicts auditory spectrograms of a given melody at various stages in the fully-

trained MirrorNet. The spectrogram (b) suggests how well the decoder has learned to generate

an identical spectrogram to the one generated with DIVA for the exact same controls. The

spectrogram (d) suggests how well predicted DIVA controls are from the encoder to synthesize

an identical melody to the input.

We performed preliminary statistical tests to evaluate the robustness of the MirrorNet in

predicting the 7 parameters. The plot in Figure 2.23.a validates that the predicted and ground

truth parameters are significantly closer together than would result from a random set of values.

A second test was performed to check how well the predictions of each parameter are compared

to a random prediction. For that, we performed a Levene’s test that confirmed that all parameter

predictions were significantly better than chance. The plot in Figure 2.23b shows the parameter

difference distributions for the test set. The distributions also suggest that critical parameters

like pitch, bandpass filter, filter resonance, and duration are predicted with significant accuracy

as volume and envelope attack parameters are predicted with comparatively lower accuracy.
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Figure 2.22. (Top panel) Auditory spectrograms from the model learned with DIVA synthe-
sized melodies (set 2) (a) Input melody (b) DIVA output from the learned control parameters.
(Bottom panel) Auditory spectrograms from the model learned with piano melodies. (c) Input
melody (d) DIVA output from the learned control parameters.

2.5.3.2 Learning DIVA parameters from melodies synthesized with extra un-

known DIVA parameters (set 2)

In this experiment, we use a train set of 400 and a test set of 80, both DIVA-generated

melodies (set 2) which are synthesized in a similar fashion to set 1 except for the fact that

they now use all the 10 parameters in Table 2.1. The MirrorNet is still trained to predict 7

parameters as in the previous experiment. The goal here is to demonstrate that the MirrorNet

can approximate the input melodies even if they have additional sound/musical qualities that

are impossible for the restricted set of 7 DIVA parameters to reproduce, e.g., vibrato in this

case. The top panel in Figure 2.22 illustrates the original (vibrato) notes and the successfully

regenerated melody captured with only 7 parameters (vibrato not included).
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Table 2.2. Mean and variance of Mean Square Errors (MSE’s) across multiple model training
runs
Input melody type Train/Test vs DIVA(learned) Parameter-Train Parameter-Test
DIVA melodies (set 1) 2.995±.21/3.596±.15 0.0666±.003 0.0671±.002
DIVA melodies (set 2) 6.380±.34/8.101±.20 0.0832±.007 0.0857±.004
Piano melodies 4.585±.25/4.751±.22 - -
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Figure 2.23. Evaluating statistical significance of the predicted DIVA parameters with respect to
a set of random parameters on the test set (a) Distributions for absolute parameter differences
across all parameters (b) Distributions of parameter differences (ground truth - predicted) for
7 parameters and the distribution for a random parameter difference (ground truth - random)

2.5.3.3 Learning DIVA parameters to synthesize melodies generated from other

synthesizers

A fundamental advantage of the MirrorNet is its ability to discover the DIVA parameters

corresponding to music generated by other sources and synthesizers by finding parameters

that allow the DIVA output to be as close as possible, given the constraints of the number of

parameters (here 7 are used), to the original input. The experiment utilized 400 5-note long

piano melodies of 2 seconds that are synthesized by a Fender Rhodes digital imitation (Neo-Soul

Keys generated through Kontakt 5). The network successfully reproduces accurate renditions

of the piano music from unseen samples (test set of 80 samples) using the decoder/encoder

mappings learned during the training. The bottom panel in Figure 2.22 shows such an example

where the DIVA produces a melody that closely resembles the input piano melody.
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2.5.4 Discussion
We described a MirrorNet model inspired by cortical sensorimotor interactions measured

when humans speak or play a musical instrument (Shamma et al., 2020). The first two ex-

periments utilized DIVA-generated melodies for training, and this allowed us to evaluate the

effectiveness of the MirrorNet given the ground truth parameters to compare against, e.g.,

to perform preliminary tests to validate the MirrorNet predictions of the synthesizer controls

across all the training and test sets, as shown in Table 2.2. The MSE values for the test set

compared to the train set in Table 2.2 also give an idea of how well the model generalizes for

the unseen input melodies.

Taking the MirrorNet to the next level in the last experiment, we demonstrated how the

MirrorNet could closely approximate a set of controls for DIVA to synthesize a set of piano

melodies generated by a completely different synthesizer. This idea opens up a whole new

area of applications in music synthesis as it describes a tool to find parameters for an arbitrary

synthesizer that maximally approximate an arbitrary sound without being necessarily capable

to exactly reproduce it (reproduce a violin using a guitar for instance). It should also be noted

that this study only discusses results in synthesizing fixed duration melodies with a fixed num-

ber of notes, but it is a step in the right direction to synthesizing a piece of music which can

have a variable number of notes in a fixed frame of audio.

The inspiration for the MirrorNet also comes from the area of computational neuroscience,

especially to learning and predictive processing. Our brain is able to extract strong relations be-

tween sensory stimuli and their corresponding motor parameters that enable children to learn

to speak by mere passive exposure to speech without any proper external teaching. In addition,

after learning to control their own vocal tract, adults can, without any additional training, pro-

duce sounds they hear even if the acoustic target is not reachable by their specific vocal tract

(case of experiments 2 and 3). However, the brain is able to find a set of motor parameters

that approximate the target sound while being produced by the specific vocal tract. Such pre-

dictive mechanisms can also be seen in music production when humans learn how to play an

instrument by mapping the auditory stimulation to the motor commands to a specific instru-

ment. Even music perception relies on similar predictive pathways where high-order cortical

areas constantly predict activation in the auditory cortices in order to modulate attention and

emotions, for instance(Di Liberto, Pelofi, Bianco, et al., 2020; Marion et al., 2021).

Finally, from an engineering perspective, the MirrorNet can solve problems where it is hard

to find a reasonable number of examples to train a regular feed-forward DNN network, or to

learn from examples that may not be exactly similar to the motor-plant outputs, e.g., learning to

synthesize a melody from naturally played music. We moreover believe that the MirrorNet can

be generalized to design algorithms that can control motor plants such as self-driving vehicles

given various sensory data.
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2.5.5 Conclusion and Future Work
This study presents an autoencoder architecture inspired by sensorimotor interactions to

discover and learn audio synthesizer controls. The work is novel in that the proposed MirrorNet

can learn the necessary controls to produce a melody in a completely unsupervised way. It can

also be potentially generalized to learn the controls for any motor-plant action from the sensory

data associated with them. However, to realize all these potentials, many more advances are

needed. For example, for the audio synthesizer controls explored here, it is necessary to scale

up the current implementations to far more parameters that capture richer aspects of the sound

(e.g., vibrato), to deploy more advanced and richer representations of the sound beyond the

spectrograms, to devise more efficient and faster training paradigms, and finally to target the

synthesis of continuous musical melodies which can have a variable number of notes.

2.6 General Discussion

Neural responses recorded with EEG during musical imagery exhibited detailed temporal

dynamics that reflected the effects of melodic expectations, and a TRF that is delayed and with

an inverted polarity relative to that of responses exhibited during listening. The responses

shared substantial characteristics across individual participants and were also strong and de-

tailed enough to be robustly and specifically associated with the musical pieces that the partic-

ipants listened to or imagined.

This study demonstrates for the first time that melodic expectation mechanisms are as faith-

fully encoded during imagery as during musical listening. EEG responses to music (and other

signals such as speech) segments are typically modulated by the probability of hearing that

sound within the ongoing sequence: the less probable (unexpected) it is, the stronger the

EEG expectation response (Di Liberto, Pelofi, Bianco, et al., 2020). Therefore, the finding that

imagined music is modulated similarly to listened music hints at the nature and role of musical

expectation in setting the grammatical markers of our perception. Thus, as in speech, expecta-

tion mechanisms are utilized to parse the musical phrases and extract grammatical features to

be used later for other purposes. This idea has already been discussed, and several studies have

shown that musical expectations are used as primary features in other cognitive processes from

memory (K. Agres et al., 2018) to musical pleasure (Gold, Pearce, et al., 2019). For instance,

thwarted or fulfilled expectations have been shown to modulate activity in brain regions related

to the reward system (Cheung et al., 2019), specifically to emotional pleasure (Blood & Zatorre,

2001; Zatorre & Salimpoor, 2013) and dopamine release (Salimpoor et al., 2011), discussed in

more details in 4.1.0.2 and 5.1. Therefore, it is likely that imagery induces the same emotions

and pleasure felt during musical listening because melodic expectations are encoded similarly
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in both cases. This explains why musical imagery is a versatile place for music creation and

plays a significant role in music education.

Viewed within a system framework, auditory imagery responses represent predictive re-

sponses prompted by higher-level cognitive processes that simulate the brain’s perception of

incoming stimuli. This mechanism can be compared to the perceptual equivalent of the ef-

ference copy, frequently initiated by the motor system (Ventura et al., 2009). This conceptual

analogy has spurred a multitude of investigations into auditory imagery within motor contexts,

such as covert speech, suggesting that these imagined responses may possess a predictive motor

nature (Y. Ding et al., 2019; Tian & Poeppel, 2010; 2012; 2013; Whitford et al., 2017).

In the domain of musical imagery, rhythm, specifically, has been intricately associated with

the activation of the Supplementary Motor Areas (SMA) and pre-SMA (Bastepe-Gray et al.,

2020; Gelding et al., 2019; A. R. Halpern, 2001; A. R. Halpern & Zatorre, 1999; Herholz et

al., 2012; Lima et al., 2015; 2016; Meister et al., 2004; Zatorre & Halpern, 2005). Moreover,

notational audiation (musical imagery induced by reading musical scores) and passive listen-

ing have been demonstrated to elicit covert excitation of the vocal folds, exhibiting a neural

signature akin to that observed during actual musical imagery (Brodsky et al., 2008; Pruitt

et al., 2018; Zatorre et al., 1996). The bidirectional relationship between motor and imagery

processes is evident in an Electrocorticography (ECoG) study, which revealed robust auditory

responses triggered by silent keystrokes on a keyboard (Martin et al., 2017).

It becomes apparent that imagery processes are likely facilitated by the intricate connections

between motor and sensory regions that typically co-activate during task performance, such as

the coordination between vocal-tract activity and speech production, finger movements during

piano playing, and visual processing during reading (Shamma et al., 2020). However, these

tight interconnections pose experimental challenges in disentangling the sources of neural ac-

tivity (Zatorre et al., 2007), given that auditory imagery may be partly influenced by motor

components (A. R. Halpern & Zatorre, 1999). Irrespective of their origins, it is imperative to

regard imagery responses as top-down predictive signals. The most striking evidence in our

dataset is the polarity inversion relative to listening responses. This inversion facilitates the

comparison between bottom-up sensory activation and its top-down prediction, thereby gener-

ating an "error" signal. Predictive coding theories have long postulated that this "error" signal

is pivotal information that deeply permeates brain processing (Koster-Hale & Saxe, 2013; Rao

& Ballard, 1999). This critical observation has been thoroughly investigated in detail in study

#2.

Many studies have already shown that neural responses were modulated by expectation.

For example, the amplitude of event-related potentials (ERPs) for model-predicted expected or

unexpected notes can be compared. This approach has been successfully utilized with differ-

ent methodologies, including EEG (Di Liberto, Pelofi, Bianco, et al., 2020; A. R. Halpern et al.,
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2017; Marion et al., 2021; Omigie et al., 2013a; M. T. Pearce et al., 2010) , MEG (Quiroga-

Martinez, C. Hansen, et al., 2020; Quiroga-Martinez, Hansen, et al., 2020), ECoG (Di Liberto,

Pelofi, Bianco, et al., 2020), and sEEG (Omigie, Pearce, et al., 2019). Recent studies used

time-continuous evaluation of expectation from the model to predict EEG data using Temporal

Response Function decoding (Di Liberto, Pelofi, Bianco, et al., 2020; Di Liberto et al., 2021;

Marion et al., 2021), allowing for precise correlation measurements between the recordings

and the predicted EEG. We conducted such a TRF analysis and confirmed the hypothesis that

low-frequency EEG responses to naturalistic music encode melodic expectations in correspon-

dence of prospectively predictable silent events. The responses to silent events were shown to

co-vary with the expectation strengths, which were drawn from a note onset-time statistical

model (M. T. Pearce, 2005), as it was previously shown for music notes (Di Liberto, Pelofi,

Bianco, et al., 2020; Omigie et al., 2013b). These results are in line and go beyond previous

measurements of the neural responses to sensory omissions, which focused on scenarios where

strong expectations on the upcoming occurrence of a stimulus were built artificially (missing

stimulus potentials - MSP; (Bendixen et al., 2009)). This study shows a very clear evidence of

the second hypothesis of the Predictive Coding Theory: probabilistic prediction hypothesis.

Cross-sensory predictions, which very possibly have links with the imagery responses as

discussed earlier, were also investigated. Study #3, inspired by thereby characterized bi-

directional predictions between motor and auditory areas during speech, defined a compu-

tational model for learning sensorimotor interactions. The architecture of the MirrorNet has

been invoked in many perceptual contexts since it lends itself to many functional interpreta-

tions. One common case in point is as a substrate for imagination, i.e., sensory percepts devoid

of external stimuli or actions without actual movements (Tian et al., 2016). In the MirrorNet,

the forward projection of a skilled pianist can recapitulate musical percepts by simply moving

her fingers appropriately without actually producing a physical sound(Martin et al., 2017). In

fact, as mentioned earlier, Martin’s study had already demonstrated that the “imagined" ac-

tivity, which is experimentally similar to our M responses, exhibited detailed spectrotemporal

structure much like the L responses. Similarly, the urge to dance or tap when listening to a beat

or a melody can also be interpreted as commands injected from a trained inverse pathway into

the appropriate motor areas. Such imagination can be recast as an expectation, anticipation, or

prediction of sensory stimuli from a contextual memory or motor areas, and hence may serve

a preparatory function (P. Andrew et al., 2020). In fact, this view is consistent with(C. Gregory

et al., 2014) findings of sensorimotor transformations where auditory-responses were shaped

by subsequent, hence expected vocal-tract actions. The MirrorNet, therefore, can be seen as

a unifying architecture that can harmoniously organize diverse perceptual processes and sen-

sorimotor tasks. In addition to his role in modelling perceptual processes and sensorimotor

tasks, this model can also be seen as a neuromorphic engineering powerful algorithm. Indeed,
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it sources from the fact that the vocal tract is non differentiable and proposes to model to way

the brain solved this problem. However, learning inverse functions for non differentiable mod-

ules is a very complicated engineering problem that often requires very big amounts of labeled

data to train an inverse model in a supervised way. The MirrorNet offers a way to solve this

problem without any data in an unsupervised manner. A common case of application of such

problem in music is for audio synthesizers. Music synthesizers are known for being extremely

complex and complicated to the extent that even professional musicians can sometimes have

a very hard time finding the right parameters of the synthesizer in order to generate a given

sound. This can have industrial applications in the music industry when producers want to

record extra takes of a synthesizer for which they have erased the presets or in order to quickly

reproduce a sound from another recording, potentially using another synthesizer. Study #4

presents an autoencoder architecture inspired by sensorimotor interactions to discover and

learn audio synthesizer controls. The work is novel in that the proposed MirrorNet can learn

the necessary controls to produce a melody utilizing a given complex timbre in a completely un-

supervised way. It can also be potentially generalized to learn the controls for any motor-plant

action from the sensory data associated with them. However, to realize all these potentials,

many more advances are needed. For example, for the audio synthesizer controls explored

here, it is necessary to scale up the current implementations to more parameters that capture

richer aspects of the sound (e.g., vibrato), to deploy more advanced and richer representations

of the sound beyond the spectrograms, to devise more efficient and faster training paradigms,

and finally to target the synthesis of continuous musical melodies which can have a variable

number of notes.

To conclude, the work presented in the chapter enrich the field of neural predictions. It

shows for the first time using electrophysiology that musical imagery induces neural responses

of a predictive nature that are encoding musical expectation, even in the total absence of phys-

ical stimulation. We also showed that those same responses are the ones exhibited in natural

moments of silence in ecologically valid music. This new finding is a very strong evidence

toward the predictive coding theory, especially its second hypothesis. Finally, we built, based

on recent findings about efference copies between the motor and auditory systems a computa-

tional model allowing for learning inverse functions of non differentiable modules. Especially,

we have shown that we can solve the complex problem of finding the parameters for a complex

synthesizer that produce a given sound.
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3 NEW STATISTICAL MODELS FOR MUSICAL EX-

PECTATION

NEW STATISTICAL MODELS FOR MUSICAL EXPECTATION 87



3.1 General Introduction to Computational Models of

Music Cognition

3.1.1 Presentation

The computational counterpart of musical predictions has received some recent highlights

thanks to the development of computational models of musical structures that can be used

to predict listeners’ internal predictions for upcoming musical events. Specifically, this can

be assessed by statistical models of music trained on a large corpus of musical pieces. They

generate a probability distribution given a musical context and can be either generative or

descriptive.

Generative models aim to produce music in a specific style by repeatedly sampling the prob-

ability distribution of the next note to produce an entirely new piece, while simultaneously

respecting the structural grammar of the musical style.

Descriptive models are used to characterize the musical structures found in a particular piece

of music. The modeled structures can be applied to novel musical samples in order to extract

expectation values for each of the notes (i.e. how well the model predicted the note). Such

models, supposed to predict listeners’ expectations, have been able to account for, among oth-

ers, melodic syntax (Margulis, 2003; M. T. Pearce, 2005), tension and resolution patterns (Far-

bood, 2012; Lerdahl & Krumhansl, 2007), harmonic and rhythmic structures(M. Rohrmeier,

2011), phrase boundaries (Lerdahl & Jackendoff, 1996), memory (K. Agres et al., 2018), and

arousal and valence (Egermann et al., 2013; Sauvé et al., 2018).

Architectures The architecture of such models is divided into two types: theory-based ex-

plicit rules vs. statistical learning of musical events (M. T. Pearce et al., 2008).

Explicit, theory-based rules, also referred to as Gestalt-like rules, represent hard-coded prin-

ciples of domain-general auditory perception applied to music processing (Temperley, 2008).

For instance, the preference for small intervals may be rooted in Gestalt-like principles of gen-

eral perception. Other explicit rules also include Western music-theoretic insights such as the

idea that a melody should lie in a certain key (Lerdahl, 2004; Margulis, 2003; Narmour, 1990;

Schellenberg, 1997).

These theory-based models fail to capture the fine-grained variations occurring between

musical styles (Cenkerová & Parncutt, 2015) or musical cultures (M. T. Pearce, 2018). To bridge

this gap, the statistical analysis of large musical corpora can be used to uncover embedded, non-

explicit rules that vary from one style or culture to another. Statistical models can be formulated

and applied to a musical corpus M with the aim of approximating the probability distribution

P on a note n, given the context C consisting of a sequence of notes occurring before n. Thus,

88 CHAPTER 3



the probability p of a given note can be written as (Eq.1):

PM(n|C) = p (3.1)
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Figure 3.1. A schematic representation of the IDyOM model. (A) Graphical representation
of the 1-order Markov-chain of the STM for the purple note on the melody Als Jesus Christus in
der Nacht (BWV 265) by J. S. Bach. (B) (left panel) The predicted probability distribution for
each upcoming note for the same melody. (right panel) The actual notes are used as a ground
truth to compute the IC from the distribution. (C) The IC and Entropy for both the long-term
model.

Recent advances in machine learning and especially in music generation have given rise to a

new generation of models of music based on deep neural network architectures (Briot, 2021).

They also aim at predicting a PM distribution but using more complex learning functions. For

instance, the DeepBach model (Hadjeres et al., 2017) is designed to capture the syntax of Bach

chorals using bidirectional LSTMs (long short-term memory). Another is the transformer model

which was initially formulated for NLP translation machines (Vaswani et al., 2018), but has been

applied to music (C.-Z. A. Huang et al., 2018) and is known to outperform previous models in
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terms of music generation based on ratings from listeners. However, all these recent models are

based on bi-directional (non-auto-regressive) information, meaning that musical events from

the past and the future are used to compute the probability of a given event, making them

inappropriate to model cognitive processes of music perception.

However, among the variety of models used to represent and estimate the probability dis-

tributions PM , the most common of which are the models based on Markov chains (Abdallah

& Plumbley, 2009; Ames, 1989; Gillick et al., 2009; Manning & Schutze, 1999; M. Pearce &

Wiggins, 2004; M. T. Pearce, 2005; Perruchet & Vinter, 1998; M. Rohrmeier & Cross, 2008).

Markov chains applied to music are stochastic models describing the statistics of note sequences

by collecting the probability of note transitions over k-order (as illustrated in fig.3.1.A in which

1-order statistics are collected) and estimating the probability of each note as a function of the

preceding k-grams (a sequence of k notes). The IDyOM model, described by Marcus Pearce in

his Ph.D. thesis(M. T. Pearce, 2005) dominates the field of music cognition. However, it has

internal limitations: i) its implementation in the language Lisp makes it very hard to modify at

ease in order to check for new cognitive hypotheses; ii) its Markov chains-based architecture

(discrete and independent features) makes it only able to model symbolic data when audio

data would allow for more ecologically-valid studies. We will discuss those limitations later.

3.1.2 Validation of Models

A computational approach to evaluate these models consists in assessing how well the model

is able to generalize to unseen portions of the data set (theoretical evaluation). A usual way is

to use the negative log-likelihood on testing data T , as described in Eq. 3.1.2. This technique

allows to compare models on the same data in terms of computational generalization.

er ror =
∑

n∈T

−log(PM(n|C))
|T |

(3.2)

3.1.2.1 Neural and Behavioral Validation

However, evaluating these computational models against neural and behavioral evidence

(experimental evaluation) contributes to a fine-grained characterization of the computational

principles underlying musical enculturation. Yet, this is a challenging endeavor because of the

multiple metrics used and the difference between the data sets they are trained and evaluated

on.

For generative models, a type of evaluation consists of asking participants to report whether

excerpts of music are taken from the training corpus (original data) or generated by the model
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(Hadjeres et al., 2017). A higher confusion between the two categories indicates a better per-

formance of the model in mimicking human production. Singing (Carlsen, 1981; Fogel et al.,

2015; Sears et al., 2018), rating (C. L. Krumhansl & Kessler, 1982; C. L. Krumhansl et al., 2000)

or guessing (Manzara et al., 1992; M. T. Pearce, 2005) a probe tone in continuation of a priming

melody can be used to approximate the probability distribution of the priming melody ending,

which can be compared to the model’s distribution (M. T. Pearce & Wiggins, 2006). Continuous

ratings of arousal and valance were also demonstrated in evaluating a model’s performance as

they are known to correlate with the expectation of notes (Egermann et al., 2013; Sauvé et al.,

2018). These measures are subjective, in the sense that it is based on participants’ self-reports.

Alternative ways to evaluate models’ performances exploit objective measures, either de-

rived from behavioral or neural responses. These measures allow the experimenter to evaluate

directly the signal of interest without the participants knowing what is being measured. For

instance, memory for specific melodies is tied to how unexpected its content is (K. Agres et al.,

2018). In a similar vein, melodic priming can be used in paradigms that consist of collecting

reaction times (RTs) on a timbre deviation task, relying on the correlation between RTs and

the expectation of the pitch and rhythm (J. J. Bharucha & Stoeckig, 1986; Bigand & Pineau,

1997; Bigand et al., 2001; Margulis, 2003; Margulis & Levine, 2006; Marmel et al., 2008; 2010;

Omigie, Pearce, & Stewart, 2012; Tillmann et al., 2006). The efficacy of the model can then be

evaluated by comparing the behavioral RTs with its computed expectations.

A recent paper took advantage of pupil dilation response to demonstrate that this physio-

logical response was correlated to note expectation and modulated by different levels of uncer-

tainty of predictions (Bianco et al., 2019; Bianco et al., 2020). Also, many studies have used

neural data (EEG, MEG, ECoG) to assess the performance of descriptive models. For example,

the amplitude of event-related potentials (ERPs) for model-predicted expected or unexpected

notes can be compared. This approach has been successfully utilized with different methodolo-

gies, including EEG (Di Liberto, Pelofi, Bianco, et al., 2020; A. R. Halpern et al., 2017; Marion et

al., 2021; Omigie et al., 2013a; M. T. Pearce et al., 2010) , MEG (Quiroga-Martinez, C. Hansen,

et al., 2020; Quiroga-Martinez, Hansen, et al., 2020), ECoG (Di Liberto, Pelofi, Bianco, et al.,

2020), and sEEG (Omigie, Pearce, et al., 2019). Recent studies used time-continuous eval-

uation of expectation from the model to predict EEG data using Temporal Response Function

decoding (Di Liberto, Pelofi, Bianco, et al., 2020; Di Liberto et al., 2021; Marion et al., 2021),

allowing for precise correlation measurements between the recordings and the predicted EEG,

as illustrated in Figure 3.2. These studies showed, for instance, that the expectation signal

trained on Western music is encoded in the EEG recordings of Western listeners listening to

and imagining Bach chorals (Marion et al., 2021), and listening to partitas (Di Liberto, Pelofi,

Bianco, et al., 2020) and constructed spatial maps of the correlations. Also, they showed that

both long- and short-term models are accurately encoded, justifying the structure of the IDyOM
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model as well as the pertinence to the cultural information learned from the training corpus.
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Figure 3.2. Musical expectations are encoded in the brain. In Di Liberto et al., 2019, the
authors established that the relative surprise of musical events, as predicted by the IDyOM
model (M. T. Pearce, 2005), was encoded by cortical activity recorded by EEG sensors, and
especially with ECoG electrodes implanted in auditory regions typically involved in high order
auditory processes (Di Liberto, Pelofi, Bianco, et al., 2020). A kernel to describe the mapping of
the continuous musical surprise in each sensor recording was trained and optimized to assess
the musical encoding accuracy by correlating predicted to actual neurophysiological measure-
ments. The figure shows all the electrodes implanted (2 patients). Black dots refer to electrodes
non-responsive to music, the others are colored according to the electrode signal correlation
with the expectation signal predicted by IDyOM.

3.1.2.2 Measuring Distance Between Musical Cultures

Finally, computational models of musical structure can be useful to quantify the stylistic or

cultural distance between two musical corpora. As aforementioned, musical structures vary

from culture to culture (Reck, 1977; Stevens, 2004). Pitch, rhythm, or meter features follow

norms carved by centuries of tradition and practice (Arom, 2004; Fracile, 2003; M. T. Pearce

& Wiggins, 2006). The extent to which extent two musical systems resemble or differ from

each other is an important question, as it may predict how easily listeners can learn unfamiliar

musical systems (Thaut et al., 2018). Such a distance between two musical styles can be defined

as “the degree to which the music of any two cultures differ in the statistical patterns of pitch

and rhythm, and it will predict how well a person from one of the cultures can process the

music of the other” (Demorest & Morrison, 2016). This is illustrated in Figure3.1.E which

simulates the cultural distance between two corpora of Western and Chinese music, replicating

the results reported in (M. T. Pearce, 2018). The corpora were made up of melodies ranging

from 45 to 60 seconds in duration. From each corpus, a number of melodies were selected

that had a comparable overall number of notes. An expectation signal for each melody was

predicted from IDyOM trained on the Chinese or Western corpora (Figure 3.1.D).
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3.1.3 Limitations of Current Models and Scientific Contribution

Statistical models of music are a key aspect of the contemporary challenges in the field of

music cognition. However, the field is currently dominated by IDyOM which has two major

limitations.

The first one is that its only implementation is in the Lisp programming language. This

language becomes quite old and is less and less used, especially, it is not the language of

predilection of our community. This makes it rather hard to use for colleagues who are not

very comfortable with it or with the command line. One of the results is that almost no one

can modify to source code of IDyOM to test new hypotheses or to use it for different purposes.

It is for those reasons that we think it is very important for the community to publicly release

of Python re-implementation of the IDyOM model. In this chapter, we will present our new

implementation of IDyOM in Python, give a clear and deep comparison of its performances

concerning the original Lisp implementation, and present new features and behavior of the

model that were used in recent articles in the field and made possible thanks to this new im-

plementation.

The second limitation of the IDyOM model is that is it solely symbolic making it suited to

musical scores and not to audio recordings. This is a very important limitation as the corpora

of symbolic data we have access to are limited and do not allow us to train models for specific

communities, and more importantly individual listeners. Also, it constrains our experiments to

be based on musical scores rather than actual recorded musical performances. We therefore

have to synthesize the musical scores using computer software to guarantee the alignment be-

tween the stimuli heard by the participants and the input of the model; which considerably

decreases the ecological validity of our experiments. That is why we decided to work on a new

model based on continuous Bayesian inferences to statistically model music through spectro-

grams instead of symbolic musical scores.

This chapter will present those two new models: IDyOMpy and MusiREX. I designed and

implemented IDyOMpy based on the original architecture of IDyOM, the information was ex-

tracted from Pearce’s PhD thesis (M. T. Pearce, 2005). The project has been facilitated by

Giovanni Di Liberto, Shihab Shamma, and Benjamin Gold who prepared the analysis using his

self-reported pleasure data; they will be authors in the future article. Amélie Picard imple-

mented the MusiREX model, and wrote the description of the model (section 3.3.2.3) under

my supervision during her internship at LSP, based on the D-REX model originally designed

by Benjamin Skerritt-Davis and Mounya Elhilali (N. Huang & Elhilali, 2017). The project has

been facilitated by and Benjamin Gold who prepared the analysis using his self-reported plea-

sure data and will be reviewed by Benjamin Skerritt-Davis, Mounya Elhilali, Shihab Shamma;

they all will be authors in the future article. I conducted all the analyses and generated all the

NEW STATISTICAL MODELS FOR MUSICAL EXPECTATION 93



figures presented in the chapter (except for explicit mention). The presented sections are still

unpublished but present a first version of future articles that will be slightly modified and soon

sent to publishers.

3.2 IDyOMpy: a New Python Implementation for IDyOM,

a Statistical Model of Musical Expectations 1

3.2.1 Introduction

During the 1950’s, the music critic Leonard Meyer advanced the idea that musical predic-

tions were at the core of music perception(Meyer, 1956). The development of the Predictive

Coding Framework(Clark, 2013; K. J. Friston et al., 2010) has since further elaborated this idea

and provided computational formulations for its implementation(Koelsch et al., 2019; M. A.

Rohrmeier & Koelsch, 2012; Vuust, Heggli, et al., 2022a). This framework revolves around the

notion that the brain learns a model of the world that is continuously used to predict sensory

inputs. Perception, therefore, becomes an encounter between sensory inputs and their predic-

tions(Keller & Mrsic-Flogel, 2018) generating a prediction error that is exploited to update the

model(Näätänen et al., 2007). This theory rests on two main hypotheses: (1) The Statistical

Learning Hypothesis which states that the brain needs to learn and update an internal model

of the environment’s regularities; (2) The Probabilistic Prediction Hypothesis which postulates

that predictions of the sensory inputs are based on the same internal model so as to modulate

their neural encoding and facilitate their perception.

A large number of studies are currently investigating predictions in music(M. T. Pearce,

2018; M. A. Rohrmeier & Koelsch, 2012; Vuust, Heggli, et al., 2022a; Witten et al., 1994),

speech(Norris et al., 2016; Poeppel, 2012), vision(Enns & Lleras, 2008; Kimura, 2012), touch(Kilteni

& Ehrsson, 2017; Schubotz, 2007), and even smell(Zelano et al., 2011), many using computa-

tional models to account for human cognition(C. L. Krumhansl et al., 2000; Nixon & Tomaschek,

2021) or cortical activity(Broderick et al., 2018; Di Liberto, Pelofi, Bianco, et al., 2020; Marion

et al., 2021). Models for speech are particularly varied and widespread, and include com-

plex DNN implementations (Brown et al., 2020; Mikolov et al., 2013; Vaswani et al., 2017)

that are presumed to reflect different facets of human cognition(Caucheteux & King, 2022;

Goldstein et al., 2022). The community of music cognition has embraced this approach(M. T.

Pearce & Wiggins, 2012) and already demonstrated its two hypotheses by demonstrating that

explicit(Corrigall et al., 2022; Fogel et al., 2015; Morgan et al., 2019; M. T. Pearce & Wig-

gins, 2006; Sears et al., 2018) and implicit(Bianco et al., 2019; Bianco et al., 2020; Corrigall
1Authors: Guilhem Marion, Giovanni Di Liberto, Benjamin Gold, Shihab Shamma
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et al., 2022; Di Liberto, Pelofi, Bianco, et al., 2020; A. R. Halpern et al., 2017; Marion et al.,

2021; Omigie, Pearce, et al., 2019; Omigie, Pearce, & Stewart, 2012; Omigie et al., 2013a;

M. T. Pearce et al., 2010; Politimou et al., 2021; Quiroga-Martinez, C. Hansen, et al., 2020;

Quiroga-Martinez, Hansen, et al., 2020) predictions correlate well with the probability of mu-

sical events in the listeners’ culture(C. L. Krumhansl et al., 2000). Prediction signals have even

been measured during moments of musical silence which correlated well with the probability

of the absent note(Di Liberto et al., 2021). Moreover, it has also been determined that passive

exposure to unfamiliar music engenders statistical learning that is consistent with the music

heard. For instance, passive exposure to Eastern music (chosen because of its uncommon time

signatures) facilitates in young children and adults the detection of violations in new musical

excerpts with similar time signatures (E. E. Hannon & Trehub, 2005b). Another study repli-

cated this phenomenon for pitch with adult listeners who gained superior abilities to predict the

next note in melodies sampled from random musical grammar after being passively exposed to

different melodies sampled from the same musical grammar(Loui et al., 2010).

In general, predictions have accounted for many other facets of music cognition such as

memory(K. Agres et al., 2018), emotions(Sauvé et al., 2018), pleasure(Gold, Mas-Herrero, et

al., 2019), reward(Cheung et al., 2019) making it a rich framework for future musical studies

(Pelofi et al., n.d.; Vuust, Heggli, et al., 2022). Compared to speech, however, the modeling of

music cognition has been dominated by a single powerful model: IDyOM(M. T. Pearce, 2005),

which has been used in almost every study of musical prediction and cited in over 300 articles.

This model, however, is implemented in Lisp making it difficult to use and modify to test new

cognitive hypotheses.

Here we propose a Python implementation of the IDyOM model with improvements such as

an alternate technique for merging different Markov chains’ orders. We also propose new fea-

tures that have been used to explore new ideas about the brain, e.g., a model for computing the

probability of having melodic notes during silent intervals, and a model that monitors learning

during training. Finally, we provide a specific quantitative comparison with the original Lisp

implementation using both theoretical (based on generalization error) and cognitive (based on

EEG decoding and self-reported data) measures. We demonstrate that this new implementation

replicates the original Lisp implementation and improves on some of its findings.

3.2.2 Implementation

Information Dynamics Of Music (IDyOM) is a statistical model of melodic progressions cre-

ated by Marcus Pearce and published in 2005(M. T. Pearce, 2005). The model computes how

expected (by means of information content and entropy) a note is in a given context after a

training phase on a corpus of melodies.

NEW STATISTICAL MODELS FOR MUSICAL EXPECTATION 95



3.2.2.1 Architecture

The model is based on variable-order Markov chains and is composed of two parts: a long-

term model (LTM) which is pre-trained on a musical corpus, and a short-term model (STM)

which is trained on the current evaluated piece in order to catch repeating structures within

the song. Both the LTM and STM models rest on the same architecture, but the data they are

trained on are different. An important limitation of Markov chains is that they are discrete

models, making them unsuitable to work on continuous data such as raw audio waveforms or

spectrograms. The use of IDyOM is therefore limited to symbolic musical scores.

Variable Order Markov Chains A Markov chain describes a memoryless2 process which

means that any event is only a function of the previous one. Formally, for ∀i, X i sequential

random variables,

P(Xk = x |Xk−1, Xk−2, ..., X0) = P(Xk = x |Xk−1)

Let Σ be the set of all possible notes, referred top as the alphabet, borrowing the term from

formal languages. P : Σ2 → [0,1] is a function for the probabilities of transitions from note

to note. Such a model can be expressed as an n ∗ n matrix or a graph G = (V, E) where V

(vertexes) is the set of notes, and E (edges) indicate the transition probabilities. This model is

known as a first-order Markov Chain.

The fig. 3.3.A illustrates a simple example of a graph representation of a first-order Markov

chain for music. It expresses the statistical model representing the beginning of the melody of

Au Clair de la Lune (fig. 3.3.B).

Because of the highly structured nature of music, it reasonable to assume that note probabil-

ities would depend on more than one prior note. Musical sentences are often constructed over

a large number of previous notes and thus show long-term dependencies. By using n-grams

as the alphabet of the Markov chain, it is still possible to use the Markov model and include

long-term dependencies.

An n-gram is a combination of n elements of the alphabet Σ. For instance, if the alphabet

is Σ = {a, b}, all the 2-grams are {aa, ab, ba, bb}. Formally, it is an element of the Cartesian

product of the original set of states (in our case Σ). For instance, 2-gram ∈ Σ × Σ, 3-gram

∈ Σ×Σ×Σ, ..., and so,

n-gram ∈
n
∏

k=1
Σ

By using n-grams as elements of S, the set of states of our Markov Chain, we can define the

transition probability between n-long words ω, ∀n,

2The next event only depends on the value of the current event. No memory is stored.
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D. Collapsed Representation

Figure 3.3. (A) Markov chains of order 1 and (B) order 2 corresponding to (C) the score of
the beginning of the melody Au Claire de la Lune. (D) A collapsed representation of order 2
illustrating the flow of all subsequent states collapsed into single notes. Therefore, the context
states are seen on the left and the target (subsequent) notes on the right. This is a simplified
version of the Markov chains that is more suited for predicting the next note (as opposed to
the next sequence) and is used in the implementation of IDyOM to simplify the computations.

P(Xk:k+n =ω|Xk−n:k)

Fig. 3.3.C shows a graph representation of the 2-order Markov chain on the melody Au

Clair de la Lune, where the number of states hugely increase, and more data are needed to

accurately train the model, but now facilitating the representation of more complex structures.

For computational reasons, we can collapse the graph by summing across all words starting

with the same note and therefore get the probability to observe a given single note after a

given context (c.f. fig. 3.3.C):

P(Xk = x |Xk−n:k) =
∑

{ω}|ω0=x

P(Xk:k+n =ω|Xk−n:k)

Variable-order Markov chains have the flexibility to use n-grams of different lengths and to

dynamically adapt the utility of each order. The ability to embed n-long temporal dependencies

allows for modeling melodic sentences.

Merging Different Orders (Lisp Implementation) It is generally difficult to merge all dis-

tributions (one per order) into a single one. In the original IDyOM, the Prediction by Partial

Matching (PPM) algorithm is used to approximate the final P(Xk = x |Xk−n:k). PPM(Cleary &

Witten, 1984) is a data compression scheme in which the central component is an algorithm for
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performing back-off smoothing of n-gram distributions. This model is usually referred to as the

order-minus-one model and allows for the prediction of events that have yet to be encountered.

The original IDyOM uses the following definition:

P(Xk = x |Xk−n:k) = α(x |Xk−n:k) + γ(Xk−n:k) · P(Xk = x |Xk−n+1:k)

The functions α() and γ() are computed using the PPM algorithm(M. T. Pearce, 2005)(see

(Moffat, 1990) for the original method). Note that P(Xk = x |Xk−n:k) corresponds to the Markov

chain of order n−1 (here estimated with PPM). By iterating recursively, we encounter all orders

and assign a weight to each probability distribution. The following method is used:

γ(Xk−n:k) =
t(Xk−n:k)

#Xk−n:k + t(Xk−n:k)
, and,

α(x |Xk−n:k) =
#Xk−n:k · x

#Xk−n:k + t(Xk−n:k)

Where t(C) denotes the total number of symbols of Σ that have occurred with non-zero fre-

quency in context C . This method allows one to account for the diversity of distributions. Thus,

a distribution that only encountered a few n-grams will be less represented than a distribution

that saw all the alphabet.

Merging Different Orders: A New Implementation The PPM algorithm computes an ap-

proximation of large distributions and guarantees some important properties of the approxi-

mated distribution (such as that they approximately sum to 1). This allows for fast computation

but results in sub-optimal results. Therefore, instead of using the PPM algorithm to merge the

different orders of the Markov chains, we propose to use an arithmetic mean weighted by the

inverse of the relative entropies of the distributions. We denote by REi the relative entropy of

the probability distribution given by the context Xk−i:k corresponding to the i th-order model.

P(Xk = z|Xk−n:k) =

n
∑

i=1
P(Xk = x |Xk−i:k) · RE−1

i

n
∑

i=1
RE−1

i

The relative entropy is the Shannon entropy normalized by the maximal entropy of the dis-

tribution (defined by the number of elements in the support of the distribution). It allows the

weights to be comparable between orders. As the higher the order the more states are repre-

sented the entropy is then artificially higher, normalizing by the maximal entropy to account

for this problem. Entropy is defined later in 2.5
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RE(X ) = E(X )/Emax(X )

The maximal entropy is defined by the entropy of the uniform distribution that shares the

same support (number of states):

Emax(X ) = −
∑

n

1/n · log2(1/n)

This method allows better cross-validated predictions over the training set.

The Short-Term Model The short-term model consists exactly of the same computational

model as the long-term model described before but is not trained on a corpus. It is trained

during the testing phase, therefore, it only takes into account the very local grammar of the

tested piece. It is useful for accounting for local structures and repetitions within the pieces that

do affect the predictions but do not come from a long-term statistical learning process(Conklin,

1990) (key, modulations, theme repetitions, ...). The probability distributions of the short-term

model and the long-term model are merged using the arithmetic mean weighted by the inverse

relative entropies of the models (as described above for the different orders), b is an additional

parameter that allows for sharpening or smoothing of the final distribution3:

P(Xk = x) =
E−b

LT M · PLT M(Xk = x) + E−b
ST M · PST M(Xk = x))

E−b
LT M + E−b

ST M

Entropy Approximation A straightforward implementation would directly compute the en-

tropy of the long- or short-term models so as to merge them. However, since the entropy was

already computed in order to merge the Markov chains’ orders, we already know them for the

distributions from which the long-term and short-term models are drawn.

P(Z = z|C) =

n
∑

i=1
P(Z = z|Ci) · E−1

i

n
∑

i=1
E−1

i

Therefore, it is useful to find a way to compute the entropy of P only from Ei. One pos-

sible approach is to use the mean of the self-weighted entropies which proved to be a good

approximation that reduced computation times by a factor of 5:

E =
n
∑

i
Ei · E−1

i /
n
∑

i
E−1

i

3In our implementation we use b = 1.
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We ran the entire set of analyses presented above to compare the versions using the approx-

imation versus the actual computations of the entropies, and found no significant differences.

Nevertheless, the online implementation provided includes both options.

3.2.2.2 Viewpoints

Music evolves across at least 5 dimensions: Pitch, duration, timbre, intensity, and spatial-

ization. IDyOM assumes that those dimensions are independent when computing their joint

product. While the dimensions most often considered with IDyOM are pitch and duration of

the notes, any other feature can be included in the model as long as it is discrete.

P(Xk = x) = P(Pitchk = xpitch) · P(Durationk = xduration)

Xk is a valid probability distribution (sums to 1) if Pitchk and Durationk are. With P and

D, respectively the sets of all pitches and durations:

∑

x∈Σ
P(Xk = x) =
∑

pi∈P

∑

di∈D
P(Pitchk = pi) · P(Durationk = di)

∑

x∈Σ
P(Xk = x) =
∑

pi∈P
P(Pitchk = pi) ·

∑

di∈D
P(Durationk = di)

∑

x∈Σ
P(Xk = x) = 1

3.2.2.3 Training

Transition probabilities are learned from a corpus of melodies. We compute the frequencies

(counts) over all random variables and use them as probabilities4.

P(Xk = x |Xk−n:k) =
#Xk−n...Xk−1Xk

#Xk−n...Xk−1
= #Xk−n:k·x

#Xk−n:k

3.2.2.4 Features Computed from the Models

Information Content The negative log-likelihood of a note x , referred to as information con-

tent (IC), represents how well the model predicts it given the context Xk−n:k. This computation

is numerically stable with an interpretation in terms of compressibility, or of measuring infor-

mation. For instance, events with high information content are difficult to compress as they

occur rarely, one can therefore say that they contain a lot of information. This metric has been

shown to provide good measures for psychological interpretations of perceptual data (Attneave,

1954; Chater & Vitányi, 2003).

IC(x |Xk−n:k) = −log2(P(Xk = x |Xk−n:k))
4We use #ω as the number of occurrences of the word ω in the corpus and · as the concatenation operator.

Therefore, #Xk−n:k · x denotes the count of words starting with Xk−n:k and ending with x in the whole corpus.
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Entropy The entropy provides an approximation of the uncertainty given a context C . In

information theory, this measure evaluates the amount of information contained in a signal

(and not for an event, as the IC). In the case of a probability distribution, it reflects the flatness of

the distribution given by the model to estimate the confidence of the prediction. If all outcomes

are equiprobable (the model cannot gather any information), the entropy will be maximum and

the prediction will be highly uncertain. If one outcome has a probability 1 and all others 0, the

entropy will be minimum (E = 0) and the prediction is certain. For instance, the first note of

a melody is very uncertain as almost all notes are equiprobable (high entropy), whereas, the

next note during a repeated sequence is very certain as it is very likely to be the one we heard

during the previous repetitions.

EM(C) =
∑

n PM(n|C) · log2(PM(n|C))

3.2.3 Methods For Evaluating Model Performance

In order to compare our new implementation with the previous Lisp version, we define a few

metrics we will run with both implementations. We first present theoretical measures assessing

how well each model generalizes to unseen data, then assess cognitive measures through the

decoding of EEG recordings of participants listening to music, and finally, we correlate the

results with behavioral data.

3.2.3.1 Generalization Errors

A common computational approach to evaluate the different implementations consists of

assessing how well the model generalizes to unseen portions of the dataset (theoretical evalu-

ation), using the negative log-likelihood with testing data T as described in Eq. 3.2.3.1. This

technique allows us to compare models trained on the same data in terms of computational

generalization5.

er ror =
∑

n∈T

−log(PM(n|C))
|T |

(3.3)

Using the average negative log-likelihood over unseen data is based on the idea that notes

in an unseen score (underlined by the same distribution, i.e., same musical genre) should have

in mean (because of the law of large numbers) a greater probability than the ones that did not

appear. Since the probability distribution must sum to 1, a more accurate distribution should

5This method only works if the two models compute the IC in similar domains. For instance, this method
cannot be used to compare discrete and continuous models.
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generate large probability (low negative log-likelihood) on the notes of the score. Machine

Learning methodologies often use negative log-likelihood to evaluate their models(C. A. Huang

et al., 2018).

To this end, we used three homogeneous datasets of melodies: Bach chorals, traditional

Chinese melodies from the region of Shanxi, and a large database of Western folk melodies. All

were sampled from the Essen Folk Songs database6. We used k-fold cross-validation by dividing

each dataset into 5 folds. We trained a model on 4 of them and evaluated the remaining one. We

then computed the average negative log-likelihood for each song and compared them between

models.

3.2.3.2 Cultural Distance

IDyOM has been shown to be a good model for musical enculturation as it allows modeling

of cultural distances(M. T. Pearce, 2018). Therefore, one way to assess the accuracy of a model

is through the extent to which it can differentiate melodies taken from different cultures. Here,

we train 2 models: one on Bach chorals and one on traditional music from the region of Shanxi.

We use both test/train and cross-validation to compute the average generalization error for

every excerpt according to both models. We then construct a scatter plot where the x and y

axis is the generalization error for, respectively, the Shanxi and the Bach models, where each

point is a music piece. A bad model would collapse all pieces on the equality line failing to

separate the two cultures, whereas an excellent model draws the 2 groups apart on either side

of the equality line and thus classifies the two cultures well.

To quantify the extent to which the two cultures are separated we defined three measures:

Inter-cultural distance (interCD) represents the average euclidean distance between each

point of the first culture and each point of the second culture. A value of 0 means that all

points collapse, the bigger the value the further the two cultures are in the model space.

Intra-cultural distance (intraCD) represents how close the pieces are withing a culture, it is

a proxy for the variability in generalization error and the stability of the model. Small

values mean more stable model (less variance).

Clustering index = interC D
int raC D(A)/2+int raC D(B)/2 combines both inter- and intra-cultural distances

into a composite measure that tells to which extend it is easy to classify the two cultures.

6http://www.esac-data.org/
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3.2.3.3 EEG Decoding

IDyOM has been widely used in studies of the psychology and neuroscience of music, espe-

cially recently in decoding of EEG recordings that allow for a physiological benchmarking of the

model. To this end, we used data from two recent studies (Study #1(Di Liberto, Pelofi, Bianco,

et al., 2020) and Study #2(Marion et al., 2021)) that employed IDyOM to decode the EEG

data. We compared the results of the analyses using the two implementations of the IDyOM

model. Both experiments used a Biosemi Active Two 64-electrodes System and were digitally

filtered between 1 and 8 Hz using a Butterworth zero-phase filter (low- and high-pass filters

both with order 2 and implemented with the function filtfilt) , and down-sampled to 64 Hz

for Study #1 and with high-pass filters down to 0.1 Hz and low-pass filters up to 30 Hz for

Study #2. EEG channels with a variance exceeding three times that of the surrounding ones

were replaced by an estimate calculated using spherical spline interpolation. All channels were

then re-referenced to the average of the two mastoid channels for Study #1 and using global

re-referencing for Study #2 study. The stimuli were composed of 10 Bach partitas for Study

#1 and 4 Bach chorals for Study #2.

The analysis was conducted in a similar fashion as in the original studies by estimating

temporal response functions (TRFs)(N. Ding & Simon, 2012; Lalor et al., 2009b) with the

mTRF-Toolbox(Crosse, Liberto, & Lalor, 2016). This de-convolution method (implemented as

a lagged linear regression) was used to regress the IC signal computed by both implementations

of IDyOM with the pre-processed EEG recordings using cross-evaluation. Pearson’s correlation

was computed between the predicted and original EEG signals. As the predicted EEG signal

was only constructed from the IC signal from IDyOM, the correlation measures the resemblance

between the IC and the EEG recording. An IC signal that is more accurately matching human

perception is expected to generate larger EEG prediction correlations, providing us with a tool

for estimating the physiological validity of each model.

3.2.3.4 Behavioral Preference

A recent study(Gold, Pearce, et al., 2019) showed that the Entropy from the IDyOM model

could explain 19% of the variance of 44 participants’ behavioral liking measured by means of

a 7-item Likert scale on 57 stimuli. Stimuli reported to be familiar to the participants were ex-

cluded from the analysis. There was a significant Wundt (quadratic correlation, a.k.a. inverted-

U shape) effect between the liking ratings for the songs and the mean duration-weighted En-

tropy of the same songs. We, therefore, used these data as a way to estimate the validity of the

entropies computed by our model. To do so, we replicated the results of this study on the same

data but using our model trained on the same corpus. We then compared the r2 (explained

variance) using both models. In order to compute the significance of the difference between
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the two models, we computed the distribution for each model using a Bootstrap method. We

computed the r2 of the sub-sampled data (80% sampled from both participants and songs)

5000 times using the same indexes for each model. We then computed the difference distribu-

tion and computed the p-value for it being inferior or equal to 0. This p-value is reported in

the result section. We also report the individual p-values computed during the correlations.

3.2.4 Results

3.2.4.1 Information Content

We first used the generalization error (c.f. 3.2.3.1) to compare the models on different

datasets. We found that the new Python version significantly outperformed the previous im-

plementation in all three datasets: traditional Chinese music from Shanxi, Bach chorals, and

a large Western database (Fig. 3.4.A). We also used our new feature Training Monitoring (c.f.

3.2.5.2) to compare the trace of the generalization error over the course of the training. We ob-

served that the final point of the Lisp implementation is reached with fewer data for IDyOMpy

(Fig. 3.4.B). Finally, we correlated the raw IC for each note of each Bach choral between the

two models. We found a relatively strong, correlation of r = 0.7 indicating that the two models

are consistent but not identical.

We then plotted the cultural distance between traditional Chinese music from Shanxi and

Bach chorals for the two models (Fig.3.5.A). The IDyOMpy outperformed the IDyOM Lisp for

the inter-cultural distance in that it separated better the two cultures (Table 1). However, the

results also showed different intra-cultural distances depending on the corpus. However, the

overall clustering index was better for IDyOMpy demonstrating an overall superior performance

for musical cultural classifications.

Inter-Cultural
Distance

Intra-Cultural
Distance on A

Intra-Cultural
Distance on B

Clustering
Index

IDyOM Lisp 1.3924 0.99461 1.0726 1.3471
IDyOMpy 1.7914 1.169 0.97733 1.6693

Table 3.1. Cultural Classification Metrics for Both Models. The metrics are defined in 3.2.

Finally, we used the mTRF toolbox to predict EEG recordings of participants listening to

Western music (in two different studies, c.f. 3.2.3.3) from the IC signal computed with the two

models. We found no significant difference in the accuracy. However, we should note that the

EEG recordings are extremely noisy signals and it is likely that subtle differences in the IC’s

would not result in significant differences in EEG predictions.
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Figure 3.4. Comparison of the Generalization Errors. A: Average generalization error for
different datasets. Significance: ∗ : p < 10−4; ∗∗ : p < 10−23. B; Generalization error over the
course of the training of the model. C: Correlation of the IC for each note. Pearson’s r = 0.7

3.2.4.2 Entropy

To compare the Entropies computed by both models, we first correlated the raw estimates

from the two models for each note of each Bach choral. We found a relatively weak correlation

of r=0.3 (Fig.3.6.C) indicating that the two models compute the entropy differently. We then

used data from (Gold et. al., 2019) in order to assess which model explains the most variance

of the behavioral liking rating (c.f. 3.2.3 for method). We found that the new implementation

explains 22% of the variance compared to 19% due to the Lisp version. This difference was

significant and resulted in a p-value < 0.0001. This result leads us to conclude that even if the

two models compute Entropy somewhat differently, they both replicate results from (Gold et.

al., 2019) and that IDyOMpy even outperforms the Lisp implementation in terms of variance

explained giving it a cognitive validation of the Entropy computations.

NEW STATISTICAL MODELS FOR MUSICAL EXPECTATION 105



Chinese Model (IC)

0

1

2

3

4

5

6

7

8

9

10

B
a

ch
 M

o
d

e
l 

(I
C

)

Chinese Songs
Bach Chorals
Equality Line

A. Cultural Clustering for IDyOM Lisp B. Cultural Clustering for IDyOMpy

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Chinese Model (IC)

B
a

ch
 M

o
d

e
l 

(I
C

)

C. EEG Decoding Accuracy on Study #1 D. EEG Decoding Accuracies on Study #2

n.s. n.s.

1 2 3 4 5 6 7 8 9 100

Chinese Songs
Bach Chorals
Equality Line

P
e

a
rs

o
n

’s
 c

o
rr

e
la

ti
o

n

IDyOM Lisp IDyOMpy
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

IDyOM Lisp IDyOMpy

P
e

a
rs

o
n

’s
 c

o
rr

e
la

ti
o

n

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 3.5. Accuracies for cultural clustering and EEG decoding. A & B: We plotted the
piece-averaged IC for both a model trained on Shanxi traditional music (Chinese model) and
a model trained on Bach chorals (Bach model) for both the Lisp and IDyOM implementations.
We see that IDyOMpy outperforms the Lisp version in terms of cultural clustering. C & D: We
used the mTRF toolbox to encode the IC from each model (IDyOM Lisp and IDyOMpy) trained
on the same large Western database into EEG recordings of participants listening to Western
music (not in the training dataset). We did not observe any significant difference between the
models.

3.2.5 New Features

3.2.5.1 Missing Notes Detection

A recent study showed that it is possible to decode predictions from EEG recordings in

intervals of musical silences during which the IDyOM model estimated a high probability of

having a note. Moreover, the amplitude of those neural responses was correlated with the

probabilities computed by the model(Di Liberto et al., 2021). This analysis is replicated here

using a new feature from the IDyOMpy implementation: the missing notes detection feature.
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Figure 3.6. Comparison and Validation of the Entropy. A & B: Correlation of the Entropy
from respectively IDyOM Lisp and IDyOMpy with the self-reported liking ratings from (Gold et.
al., 2019). IDyOM Lisp explained 19% (p = 0.005) of the variance while IDyOMpy explained
a significantly higher proportion of 22% (p < 0.001). C : Correlation of the Entropy for each
note. Pearson’s r = 0.3

This feature only uses the duration viewpoint and computes the probability distribution

over the duration of each note. Therefore, we can compute the probability to have played a

note during the natural silences between notes. Figure 3.7 shows examples of four Bach chorals

ran with this feature.

3.2.5.2 Training Monitoring

Another new feature is the Training Monitoring. It allows monitoring of the training of the

model. Therefore, one can assess the amount of data needed for model convergence. Also,

since it is possible to initialize the model with another dataset, this feature is a good way to

compare inter- and intra-variability between corpora. Figure 3.8 demonstrates results from

two datasets of traditional Chinese music versus a large corpus of Western music. Finally,
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Figure 3.7. Missing Notes Detection: The model was run along the duration dimension only
in order to compute the probability of having a note at each time step. A threshold probability
of .2 was applied. Blue lines show the likelihood of the actual notes of the melody, and orange
lines show the probabilities of the probable notes during silences detected by the model.

this monitoring can serve as a model for learning new music and musical enculturation as it

simulates the learning of an unfamiliar musical grammar on top of an already familiar one. We

used 2-fold cross-validation to compute the generalization errors, and it is possible to choose

the number of pieces to test on. Note that the results may noticeably change depending on

how the two sets are chosen (randomly done here). It is therefore recommended to compute

the learning trace several times with different partitions of the data and take the average as the

final trace.

3.2.6 Discussion

We have presented in this report IDyOMpy, a new implementation of the IDyOM using

Python. This implementation differs in the way that the different Markov chains (for each
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Figure 3.8. Training Monitoring: The model has been initially trained on a large database
of Western melodies (Western Enculturation phase), then the model had been trained on 3
different corpora (Shanxi, Han, or a mix, all traditional Chinese music). Each line represents
the generalization error on each specific corpus and shows when each model finished con-
verging. How deep the line goes during the Western Enculturation indicates how much the
Western corpus can account for Chinese grammar. If the corpus contains more variability (as
the mix dataset) the line will be higher. How deep the line goes during the Corpus-Specific
Enculturation indicates how much variability each specific corpus contains (aka how easily it
is to generalize). Finally, the distance between the convergence plateau of the Western Encul-
turation and the Corpus-Specific Enculturation (in mean IC) indicates to which extent training
the model with each specific corpus changed the model and therefore is a good proxy for how
similar the corpora are with the initialization corpus.

order) are merged using an entropy-weighted average and not the PPM algorithm as in the

Lisp version (c.f. 3.2.2.1). We also propose a way to approximate the entropy that reduces the

computation time by at least a factor of 4 and does not significantly affect the results discussed

in this study.

This new implementation generates overall comparable or superior results and allows for

significant future improvements. We first showed that it performs better in terms of generaliza-

tion errors, the amount of training data needed to converge the model, and cultural classifica-

tions. Additionally, we showed that the IC computed from the two models were relatively close

(r = 0.7, c.f. Fig3.4) and resulted in comparable results for two EEG decoding experiments

(c.f. Fig 3.5) thus confirming their physiological consistency.
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Finally, we showed that, even if the entropies only weakly correlate between the two mod-

els (r = 0.3), IDyOMpy generates results with better correlation with the behavioral data of

self-reported liking ratings(c.f. Fig 3.6), thus providing a cognitive validation of the model’s

outcomes. In addition, we presented two original new features (missing notes detection and

training monitoring, c.f. Section 3.2.5).

Finally, to summarize, this Python implementation is generally easier to use and can be

readily installed on any computer. But more significantly, it permits quick modifications as

demonstrated by the two new features. We, therefore, believe that IDyOMpy will be a valu-

able tool of high interest to the community and will facilitate rapid progress in the field of

computational music cognition.
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3.3 Musi-Rex: a New Implementation of the D-Rex

Model for Music Purposes 7

3.3.1 Introduction

Predictions are often at the core of studies in music cognition. The Predictive Coding Frame-

work(Clark, 2013; K. J. Friston et al., 2010) is built on a theoretical basis (Koelsch et al., 2019;

M. A. Rohrmeier & Koelsch, 2012; Vuust, Heggli, et al., 2022a) postulating that the brain builds

a model of the world and then uses it to predict incoming sensory inputs. Perception would

then emerge at the encounter between the sensory inputs and their predictions(Keller & Mrsic-

Flogel, 2018), potentially generating a prediction mismatch (or "error") that is used to update

the model(Näätänen et al., 2007). Evidence for this prediction and subsequent adjustments

and learning has been experimentally validated. For instance, explicit(Corrigall et al., 2022;

Fogel et al., 2015; Morgan et al., 2019; M. T. Pearce & Wiggins, 2006; Sears et al., 2018)

and implicit(Bianco et al., 2019; Bianco et al., 2020; Corrigall et al., 2022; Di Liberto, Pelofi,

Bianco, et al., 2020; A. R. Halpern et al., 2017; Marion et al., 2021; Omigie, Pearce, et al., 2019;

Omigie, Pearce, & Stewart, 2012; Omigie et al., 2013a; M. T. Pearce et al., 2010; Politimou et

al., 2021; Quiroga-Martinez, C. Hansen, et al., 2020; Quiroga-Martinez, Hansen, et al., 2020)

predictions have been shown to correlate well with the probability of musical events in the

culture of the participants. Furthermore, cross-cultural studies have demonstrated that such

predictions are consistent with the culture of the listeners (C. L. Krumhansl et al., 2000). One

study even discovered prediction signals at moments of silence in music that were correlated

with the probability to have a note during those silences(Di Liberto et al., 2021). Studies have

also shown that even passive exposure to unfamiliar music engenders statistical learning that

is consistent with the exposed music. For instance, passive exposure to Eastern music (chosen

because of its unfamiliar time signatures) facilitates in young children and adults from West-

ern musical cultures, the detection of violations in novel musical excerpts from the Eastern

corpus(E. E. Hannon & Trehub, 2005b). Another study replicated this phenomenon for pitch.

Adults gained better abilities to predict the next note in melodies sampled from random musical

grammar after being passively exposed to different melodies sampled from the same musical

grammar(Loui et al., 2010).

Most such studies have used the widely available IDyOM model(M. T. Pearce, 2005) or its

Python implementation (cite IDyOMpy). These models are based on variable-order Markov

chains and have intrinsic limitations such as the assumption of independence between the

7Authors: Guilhem Marion*, Amélie Picard*, Benjamin Gold, Benjamin Skerritt-Davis, Mounya Elhilali, Shihab
Shamma
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musical dimensions (pitch, duration, intensity, timbre, space) and the discrete and symbolic

nature of their input. An alternate approach is based on a Bayesian formulation known as

the D-Rex model(N. Huang & Elhilali, 2017). It is reformulated here to allow for dependence

between the dimensions and continuous inputs such as, eventually, audio spectrograms. Our

implementation here is intended to behave in a similar manner to the IDyOM model, e.g.,

by considering the different dimensions of music (called viewpoints in the IDyOM model), by

having short-term and long-term aspects, and by allowing for both k-fold cross-evaluation and

train-test cycles.

We elaborate next on this model’s Bayesian implementation and compare it to the results

from the two previous IDyOM implementations (M. T. Pearce, 2005) through raw correlations of

the Information Content (IC) and Entropy, cultural classification, EEG encoding, and correlation

with behavioral data.

We shall begin by presenting the details of the new "D-Rex" implementation, referred to

henceforth as the MusiRex model, followed by the results of the comparisons.

3.3.2 D-Rex and MusiRex

3.3.2.1 Definitions and Notations

We begin by highlighting four parameters to take into consideration:

• The current event: x(t)

• The past events that we assume the current event is dependent on:

x(t − 1 : t − D) = x(t − 1), . . . , x(t − D+ 1)

• The context, e.g., the beginning of the piece: C .

We do not keep in memory the whole x(0), x(1), . . . , x(t − 1)

• The priors, that represent the culture and the musical environment of interest: π

At each iteration, we define a probability measure Pπ,C ,x(t−1:t−D) which indicates what we

are expecting to hear. Then we compute Pπ,C ,x(t−1:t−D)(x(t)):

P(x) =
∑

i

αi.Pi[x(t)|x(t − 1 : t − D)] (3.4)

where the coefficients αi and the probability functions Pi depend on π and C , but not on

x(t − 1 : t − D)

This finally gives the Information Content : S(t) = − log(P(x(t))).
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3.3.2.2 Training: priors vs context

The model functions by training on a musical dataset. Thus in equation 3.4, the probability

distribution P(x) is decomposed into a sum of simple probability distributions Pi. Each term

corresponds to a "learned context" Ci ∈ π.

Training For each musical piece used in the training, we start with only one context. P(x(t)) =
P0(x(t)|x(t − 1 : t − D)) where P0 is a probability measure set with default parameters.

Then, at each time t, we:

• create a new context i that begins at time t, with current parameters;

• update the parameters of the older context, as we describe later;

• modify the coefficients αi in order to increase the weight of the contexts that give the

highest probability;

• save the current parameters; which will serve as the parameters of the contexts ending

at time t.

In the end, we have multiple distributions Pi for each context i corresponding to an interval

[t1, t2] of the music piece.

Treatment of the priors We repeat this training with several music pieces and get a large set

of probability distributions Pi. Some are very similar and hence can be collapsed together to

simplify and reduce the set. Finally, we delete the distributions that have small weights due to

the ai-s).

Testing The resulting prior π is the set of distributions {Pi}i learned from the training corpus.

We now consider the Pi-s as fixed during the listening. By contrast, the weight coefficients αi

are adapted during the listening, with the idea being that the listener tries to infer which of the

learned situations fit the ongoing context C . For example, in classical occidental music, there

are major and minor modes, and a listener familiar with such classical music would start with

αMajor =
1
2 and αminor =

1
2 . If the musical piece begins in the major mode, then αMajor increases;

If, however, it changes to a minor mode at some time, αMajor would then decrease again.

3.3.2.3 Functioning

Each musical piece is composed of a sequence of notes with a few parameters for each note.

Thus, x(t) is a finite-dimensional vector:
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x(t) = (x1(t), . . . , xn(t))

with, for example, x1 is its pitch, x2 is duration, and x3 the sound volume. The core im-

plementation of MusiREX permits a dependence among these dimensions. However, in this

particular implementation, where we seek to match the IDyOM implementation for compar-

ison purposes, we shall assume the dimensions to be independent and hence can be treated

separately such that we consider only mono-dimensional data.

Parameters of the Pi-s The Pi-s (see equation 3.4) are multi-dimensional Gaussian mixtures

(gmm) with the following parameters:

• ki ∈ N∗ the number of components in the gmm

• ni ∈ (N)ki the number of samples used previously to compute the parameters σ and µ

• σi ∈ (MD,D(R))ki the covariance matrices for every Gaussian of the gmm

• µi ∈ (RD)ki the mean vectors for each gaussian in the gmm

• spi ∈ [0, 1]ki the weights of each component of the gmm

The probability measure therefore becomes:

Pi( x⃗) =
ki
∑

j=1

sp j
i .P

j
i ( x⃗) (3.5)

where

P j
i ( x⃗) =

(
n j

i+1
2 )!/(

n j
i

2 )!
q

nπdet(σ j
i )

�

1+
1

n j
i

< x⃗ − µ⃗ j
i |(σ

j
i )
−1| x⃗ − µ⃗ j

i >

�−
n j

i−1

2

(3.6)

and x⃗ = x(t : t − D) = (x(t), . . . , x(t − D+ 1))

What is actually computed is Pi( x⃗(t : t − D)| x⃗(t −1 : t − D)), the conditional probability to

have x(t), since we already know x(t − 1), . . . , x(t − D+ 1).

Updating the parameters After listening to x(t), we update (or not, cf later) the parameters

of the Pi-s as follows. First, the distribution is a Gaussian mixture, and hence the first step is to

find the component of the gmm to which x(t) belongs. Let j0 := argmax j(P
j

i (x(t))) the index

of the Gaussian where x(t) belongs.

If P j0
i (x(t))< β (where β is a fixed threshold), then x(t) doesn’t belong to any of the gmm

components, and thus we have to create a new component. In this case:
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ki ← ki + 1 (3.7)

nki+1
i ← D (3.8)

σ
ki+1
i ← σdefault (3.9)

µ⃗
ki+1
i ← x⃗ (3.10)

spki+1
i ← 1 (3.11)

By contrast, no new component is needed if x(t) already belongs to the mixture :

ki ← ki (3.12)

n j0
i ← n j0

i (3.13)

σ
j0
i ← (1−w)σ j0

i +w.(z2ID + (1+w)δ x⃗ ⊗δ x⃗) (3.14)

µ⃗
j0
i ← µ⃗

j0
i +w.δ x⃗ (3.15)

where x⃗ = x(t : t − D) = (x(t), . . . , x(t − D+ 1)) and δ x⃗ = x⃗ − µ⃗ j
i

z is the noise parameter (which can be set to 0) and w is the weight that we give to the new

observation

3.3.2.4 Spectro-REX model

Because this new implementation allows for working with dependant and continuous di-

mensions, the most striking application is to use spectrograms instead of symbolic (midi) rep-

resentations of the music.

This model tries to deal with a more complete representation of sound: a spectrogram. In

this case, we have

x(t) = (x f (t))0< f≤Fν/2 (3.16)

x(t) is a continuous-dimensional vector. In practice, we have to represent it with only a

finite number of dimensions. But these dimensions are absolutely not independent. As we

can see the spectrogram as a pitch distribution. So we can use the gmm distribution as de-

fined previously, which we call the "expected distribution" in order to approximate the spectral

distribution at each time point and compare it to x(t) the "real distribution" to compute the pre-

diction error. In this case, we, therefore, do not compute an Information Content or Entropy but

the L2 distance between the predicted and actual spectral distribution. This computation also

takes a long time compared to the symbolic version. We publish this implementation anyway
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and do not show extensive benchmarks (EEG or behavioral validations) and only present the

cultural distance as a proof-of-concept of the use of this model on audio data. We believe that

the community will be able to take this implementation to the next level and provide sufficient

validation.

3.3.2.5 Musical Dimensions

Music can be characterized across at least 5 dimensions (called viewpoints in the IDyOM

framework): Pitch, duration, timbre, intensity, and spatialization. MusiRex readily operates on

the axes of pitch and note durations (extracted from the midi files) and assumes their indepen-

dence. Therefore, the final probability distribution is the joint product of the distributions of

these two dimensions:

P(Z = z) = P(Pitch= zpitch) · P(Duration= zduration)

Output Features

Information Content The negative log-likelihood of a note n, referred to as information con-

tent (IC), represents how well the model predicts it given a context C . This computation is

numerically stable with an interpretation in terms of compressibility which has been shown to

correspond well to psychological interpretations of the perceptual data (Attneave, 1954; Chater

& Vitányi, 2003). Eq. 3.3.2.5 relates the information content to the probability of an event as

follows:

ICM(n|C) = −log2(PM(n|C)) (3.17)

Entropy Entropy provides an approximation of the uncertainty in the prediction. In infor-

mation theory, this measure also reflects the information content in a signal. In the case of a

probability distribution, it is associated with the flatness of the distribution generated by the

model as an estimate of the confidence of the prediction. On one extreme, if all outcomes are

equiprobable (the model has no information), the entropy is maximum and the prediction is

highly uncertain. On the other extreme, if one outcome has a probability of 1 and all others 0,

the entropy is minimum and the prediction is certain. Eq. 3.3.2.5 relates this entropy (E = 0)

to a given probability distribution:

EM(C) =
∑

n

PM(n|C) · log2(PM(n|C)) (3.18)
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3.3.3 Methods For Benchmarking the Model

In order to compare this MusiREX to previous models, we define a few metrics that we will

run on all three implementations (i.e., MusiREX, IDyOM, and IDyOMpy). We first present the-

oretical measures assessing how well each model generalizes to unseen data as well as cognitive

measures through decoding EEG recordings from participants listening to music and correlation

with behavioral data.

A general theoretical measure often used to benchmark statistical models is to compare the

generalization errors (e.g., average error) computed on the same unseen data(C. A. Huang

et al., 2018). However, MusiREX is a continuous model, as opposed to the discrete implemen-

tations of IDyOM. Because the domain of the definition of the errors is completely different,

comparing the generalization errors is impossible. However, because cultural distance is based

on ratios of IC, it is a measure that we can use to compare across the models.

3.3.3.1 Cultural Distance

IDyOM has been shown to be a reasonable model for musical enculturation allowing for the

assessment of cultural distances(M. T. Pearce, 2018). One way to measure the accuracy of a

model is through the extent to which it can differentiate melodies taken from different cultures.

Consequently, we shall train the models on two musical corpora: one is the Bach chorals and

the other is traditional music from the Chinese region of Shanxi. We use test/train and cross-

validation to compute the average generalization errors for all excerpts in both models. We then

construct a scatter plot where the x and y axes are the generalization error for, respectively, the

Shanxi and the Bach models, and where each point is a musical excerpt. A "bad" model would

collapse all pieces on the equality line failing to separate the two cultures, whereas an excellent

model would draw the 2 groups apart on either side of the line and thus classifying the two

cultures.

To quantify the extent to which the two cultures are separated we defined three measures:

Inter-cultural distance (interCD) represents the average Euclidean distance between each

point of the first culture and each point of the second culture. A value of 0 means that all

points collapse, the bigger the value the further the two cultures are in the model space.

Intra-cultural distance (intraCD) represents how close the pieces are within a culture, it is

a proxy for the variability in generalization error and the stability of the model. Small

values mean a more stable model (less variance).
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Clustering index = interC D
int raC D(A)/2+int raC D(B)/2 combines both inter- and intra-cultural distances

into a composite measure that tells to which extent it is easy to classify the two cultures.

3.3.3.2 EEG Decoding

IDyOM has been widely used in studies of the psychology and neuroscience of music, espe-

cially recently in decoding EEG recordings that allow for a physiological benchmarking of the

model. Therefore, we used data from two recent studies (Study #1(Di Liberto, Pelofi, Bianco,

et al., 2020) and Study #2(Marion et al., 2021)) that employed IDyOM to decode such EEG

data. We compared the results of the analyses using the three models of interest. The exper-

iments used a Biosemi Active Two 64-electrodes System, where the recordings for Study #1

were digitally filtered between 1 and 8 Hz using a 2nd-order Butterworth zero-phase filter and

down-sampled to 64 Hz, and bandpassed between 0.1 Hz - 30 Hz for Study #2. EEG chan-

nels with a variance exceeding three times that of the surrounding ones were replaced by an

estimate calculated using spherical spline interpolation. All channels were then re-referenced

to the average of the two mastoid channels for Study #1 and using global re-referencing for

Study #2. The stimuli were 10 Bach partitas in Study #1 and 4 Bach chorals in Study #2.

The analysis was conducted in a similar fashion as in the original studies by estimating

temporal response functions (TRFs)(N. Ding & Simon, 2012; Lalor et al., 2009b) with the

mTRF-Toolbox(Crosse, Liberto, & Lalor, 2016). This de-convolution method (implemented as

a lagged linear regression) was used to regress the IC signal computed by all models with

the pre-processed EEG recordings using cross-evaluation. Pearson’s correlation was computed

between the predicted and original EEG signals. Since the predicted EEG signal was constructed

from the IC signals from the models, the correlation then estimates the resemblance between

the IC and the EEG recording. An IC signal that more accurately matches human perception is

expected to generate better EEG predictions (and hence correlations), thus providing a direct

way to estimate the physiological relevance of each model.

3.3.3.3 Behavioral Preference

A recent study(Gold, Pearce, et al., 2019) demonstrated that the Entropy from the IDyOM

model could explain 19% of the variance of 44 participants’ behavioral liking measured by

means of a 7-item Likert scale on 57 stimuli. Stimuli reported to be familiar to the participants

were excluded from the analysis. There was a significant Wundt (quadratic correlation, a.k.a.

inverted-U shape) effect between the preference ratings for the songs and the mean duration-

weighted Entropy of the same songs. We, therefore, used these data as a way to estimate the

validity of the entropy computed by our model. To do so, we replicated the results of this study

on the same data but using our model trained on the same corpus. We then compared the
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explained variance r2 using both models. In order to compute the significance of the differ-

ence between them, we computed the distribution for each model using the Bootstrap method.

We then estimated the r2 of the sub-sampled data (80% sampled from both participants and

songs) 5000 times using the same indices for each model. We then computed the difference

distribution and computed the p-value for its inferior or equal to 0. These p-values are reported

below in the Results section.

3.3.4 Results

We first compared the raw IC and Entropy from all models and computed their Pearson

correlation as in Figure 1. We found weak correlations with both IDyOM LIsp and IDyOMpy

(respectively r = 0.45 and r = 0.43) for the IC, and similarly weak correlations for the Entropy

(respectively r = 0.4 and r = 0.1). Those results suggest that MusiREX computes the IC and

the Entropy in a different way from the IDyOM implementations, potentially suggesting new

insights into music cognition. To test this proposition, we computed a further set of measures to

determine the extent to which MusiREX can replicate previous results generated with IDyOM.

Inter-Cultural
Distance

Intra Cultural
Distance on A

Intra Cultural
Distance on B

Clustering
Index

IDyOM Lisp 1.8245 1.3033 1.4054 1.3471
IDyOMpy 2.0474 1.3361 1.117 1.6693
MusiRex 2.4846 0.92071 0.79838 2.8906

IDyOMpy (10 pieces) 1.7518 1.3438 1.7433 1.1349
Spectro-REX 0.97958 0.87511 0.35285 1.5955

Spectro-REX (timbre) 1.6212 1.1798 0.4102 2.0392
Table 3.2. Cultural Classification Metrics for All Models. The metrics are defined in 3.2.

We plotted the cultural distance between the Chinese music and Bach chorals for the various

models(Fig. 2. MusiREX separated or clustered the two corpora better than both IDyOM and

IDyOMpy, regarding the inter-cultural and intra-cultural distances (Table 1), demonstrating

that it is an excellent model for such assessment among different datasets. We also used the

spectral version of D-REX on piano-synthesized versions of 10 pieces from the Bach and Chinese

datasets. We unfortunately were not able to run the analysis on the full dataset because of

computational time (it took about 2 days to run for only 10 pieces). We ran 3 experiments, we

computed the cultural distance using IDyOMpy using only 10 pieces per dataset; we computed

the cultural distance on Spectro-REX on the exact same audio-generated pieces; finally, we

audio-generated the 10 Bach pieces but using two different instruments (acoustic and electric

pianos). The results (c.f. Fig. 3.11) show that SPECTRO-REX, in addition to providing an

excellent timbre separation (no overlap between the datasets), also provides a better separation
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A. Raw Correlations of IC with the IDyOM Lisp Model B. Raw Correlations of IC with the IDyOMpy Model
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Figure 3.9. Raw Comparisons of IC and Entropy with IDyOM and IDyOMpy. A & B: The
raw correlation of the IC produced a correlation of r = 0.45 with IDyOM (A) and r = 0.43 for
IDyOMpy (B). C & D: The raw correlation of the Entropy was r = 0.4 with IDyOM and r = 0.1
for IDyOMpy.

than IDyOMpy between the 10 Bach and Chinese songs. This is striking evidence that this

model could pretend to be the next generation of statistical models of music. Still, it requires

improvement in order to be run on full datasets and intensive benchmarking as we provide

here for Musi-REX.

We used the mTRF toolbox to predict EEG recordings of participants listening to Western

music (in two studies, c.f. 3.3.3.2) from the IC signal computed with the three models. There

were no significant differences in the accuracy for Study #1. However, we found a significantly

enhanced accuracy for MusiREX over the two other implementations of IDyOM in Study #2,

confirming the physiological utility of MusiREX.

To test a cognitive measure of the Entropy computed from all models, we used data from

(Gold et. al., 2019) to determine the variance-explained of the behavioral liking ratings (c.f.

3.3.3.2 for method) by each model. MusiREX explained 19% of the variance, exactly the same

as with the Lisp implementation of IDyOM. Both however were significantly lower than IDy-

OMpy (22%, Fig. 4.A). The significance was computed using the bootstrap method to generate

the distributions of the explained variances (Fig. 4.B) which were found to be significantly dif-

ferent between MusiREX and IDyOMpy (p < 0.0001) but not between MusiREX and IDyOM

Lisp (p = 0.2). This suggests that even if MusiREX produces different values (e.g., the shape

of the correlation with the behavioral data is different), it is still as predictive of self-reported

120 CHAPTER 3



0 1 2 3 4 5 6 7 8 9 10

Chinese Model (IC)

0

1

2

3

4

5

6

7

8

9

10

B
a

ch
 M

o
d

e
l 

(I
C

)

Chinese Songs
Bach Chorals
Equality Line

A. Cultural Clustering for IDyOM Lisp B. Cultural Clustering for IDyOMpy C. Cultural Clustering for MusiRex

Chinese Model (IC)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Chinese Model (IC)

20 22 24 26 28 30 32 34 36 38

20

22

24

26

28

30

32

34

36

38

D. Raw Correlations of IC with the IDyOM Lisp Model D. Raw Correlations of IC with the IDyOMpy Model

IC (MusiREX)

IC
 (

ID
yO

M
 L

Is
p

)

IC
 (

ID
yO

M
p

y)

15 20 25 30 35 40 45
0

2

4

6

8

10

12

14

16

18

20

16 18 20 22 24 26 28 30 32 34 36
0

2

4

6

8

10

12

14

16

18

IC (MusiREX)

Chinese Songs
Bach Chorals
Equality Line

Chinese Songs
Bach Chorals
Equality Line

Figure 3.10. Cultural Distances. Excerpt-averaged ICs for models trained on traditional Chi-
nese music (Chinese model) and on Bach chorals (Bach model). MusiREX outperforms the
other models (c.f. Table 3.2 for precise metrics).

pleasure as the original implementation of IDyOM.

3.3.5 Discussion

We have presented MusiREX, a Bayesian-based musical model that can capture the continu-

ous information flow of such signals along multiple dimensions, learn from corpora of musical

excerpts, then provide predictions based on the long- and short-time contexts of the signal, and

hence can be used in a diverse range of experimental and theoretical investigations. The results

presented here in comparison with previous IDyOM implementations exhibit relatively differ-

ent trends suggesting that MusiREX’s Bayesian nature allows for computing different statistics.

Moreover, MusiREX demonstrated better cultural classification than both previous IDyOM im-

plementations, showing that it can be reliably used as a model for musical culture in cross-

cultural studies. Finally, in analyses of EEG recordings, MusiREX performed similar or superior

decoding of EEG recordings of participants listening to music, thus providing a physiological

validation. MusiREX, however, is unique in its ability to process continuous audio data and con-

sider multiple interdependent dimensions, both being the biggest limitations of IDyOM models.

We believe that offering here the MusiREX implementation will enhance the use of statistical

modeling in music cognition and cognitive neuroscience of music, as well as generate new
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Figure 3.11. Cultural Distances for Spectro-REX. A: Excerpt-averaged ICs for models trained
on traditional Chinese music (Chinese model) and on Bach chorals (Bach model) using the midi
versions and IDyOMpy (control). B: Excerpt-averaged ICs for models trained on traditional
Chinese music (Chinese model) and on Bach chorals (Bach model) using the audio versions
and Spectro-REX. C: Excerpt-averaged ICs for models trained on Bach chorals played on an
acoustic piano (timbre 1) and on Bach chorals played on an electric piano (timbre 2) and
Spectro-REX. Spectr-REX outperforms the symbolic IDyOMpy but shows an irregular trend (the
Chinese model is always better than the Western one) and shows very excellent separation for
the timbers (c.f. Table3.2 for precise metrics).

creative uses in the field.
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A. EEG Decoding Accuracy on Study #1 B. EEG Decoding Accuracies on Study #2
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Figure 3.12. EEG Decoding Accuracies. MusiREX significantly outperforms both IDyOM (p <
10−18) and IDyOMpy (p < 10−12) in terms of EEG decoding accuracies.
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Figure 3.13. Entropy and Self-Reported Pleasure Correlation. A: Correlation of the Entropy
from all models with the self-reported liking ratings from (Gold et. al., 2019). B: MusiREX and
IDyOM Lisp explained 19% of the variance while IDyOMpy explained a significantly higher
proportion of 22% (p < 0.0001).

3.4 General Discussion

This section described two new statistical models of music along with their physiological

and behavioral validations. We isolated IDyOM as the most used model of music in the field of
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music cognition and explicit its two main limitations which are the inaccessibility of the Lisp

programming language in our community as well as the fact that it is only suited for symbolic

data (c.f. 3.1.3). We have then presented two new models that overcome those limitations.

First, we have presented IDyOMpy, a new implementation of the IDyOM using Python.

This implementation differs in the way that the different Markov chains (for each order) are

merged using an entropy-weighted average and not the PPM algorithm as in the Lisp version

(c.f. 3.2.3.1). We also propose a way to approximate the entropy that reduces the computation

time by at least a factor of 4 and does not significantly affect the results discussed in this study.

This new implementation generates overall comparable or superior results shown by means

of theoretical measures (c.f. 3.1.2) or physiological measures. In addition, we presented two

original new features (missing notes detection and training monitoring, c.f. 3.2.5). Finally, to

summarize, this Python implementation is generally easier to use and can be readily installed

on any computer. But more significantly, it permits quick modifications as demonstrated by the

two new features.

We also have presented MusiREX, a Bayesian-based musical model that can capture the

continuous information flow of such signals along multiple dimensions, learn from corpora of

musical excerpts. It, as IDyOM, provides predictions based on the long- and short-term mod-

els (c.f. 3.2.2.1), and hence can be used in a diverse range of experimental and theoretical

investigations. The results presented here in comparison with previous IDyOM implementa-

tions exhibit relatively different trends suggesting that MusiREX’s Bayesian nature allows for

computing different statistics. Moreover, MusiREX demonstrated better cultural classification

than both previous IDyOM implementations, showing that it can be reliably used as a model for

musical culture, and especially, in cross-cultural studies. Finally, in analyses of EEG recordings,

MusiREX performed similar or superior decoding of EEG recordings of participants listening to

music, thus providing a physiological validation. MusiREX, however, is unique in its ability to

process continuous audio data and consider multiple interdependent dimensions, both being

the biggest limitations of IDyOM models. We, however, hit a computational limitation about

continuous audio data. Because of the high dimensional nature of those data, the algorithm

requires a lot of resources in terms of computational power which restricts its use to small

datasets. We are in the process of optimizing the computations in GPU to benefit from the

intense parallelization of graphical computing in order to reduce the computations time.

Because those two new models allow for overcoming the previous limitations of IDyOM we

believe that those tools will be valuable to the community and will facilitate rapid progress in

the field of computational music cognition. Still, we think that we need more energy dedicated

to those models to make them more accurate, publish more cognitive validations, and make

them more usable by the community.
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4.1 General Introduction to Musical Enculturation: Learn-

ing to Enjoy Music

4.1.0.1 Learning to Predict

An essential aspect of the human condition is their evolving environment, which raises the

question of how individuals’ cognitive systems cope with this constant change. Whether con-

sidering the experience of moving to another country and being immersed in an altogether

radically new culture, or more subtle changes such as seeking exposure to a new language, a

musical style, or a type of cuisine, human beings are constantly challenged with new experi-

ences. Because human cultures are carved by norms and conventions, novel exposure to an

estranged culture induces a type of learning that is often described as implicit: When exposed

to a set of stimuli constrained by unspoken rules, cognitive systems build up a mental repre-

sentation of the underlying grammar. The learning of these grammars speaks for how much

enculturation is continually occurring. This type of learning undoubtedly constitutes one of the

essential aspects of human cognition (Fiser & Aslin, 2001; 2002; Perruchet & Pacton, 2006).

Music cognition offers a uniquely compelling opportunity to investigate the computational

and neural basis of enculturation: music is ubiquitous, produced and enjoyed in all known

human cultures (Nettl, 2015; Reck, 1977; Stevens, 2004), displays varying structural norms

across cultures (Castellano et al., 1984; Fourer et al., 2014; C. L. Krumhansl et al., 2000; Polak

et al., 2018), and humans spontaneously seek musical experiences. It has been shown that

children naturally learn the music of their own culture, much as they learn their native tongue

(Snow, 1972), through a mixture of active engagement and passive exposure and without

requiring explicit instructions (Campbell, 2010; Henrich, 2008). In fact, responses indicative

of one’s own musical systems can be measured as early as 12 months of age (E. E. Hannon &

Trehub, 2005a; 2005b; Lynch & Eilers, 1992; Schellenberg & Trehub, 1999) reflecting varied

structural aspects of the musical culture, such as consonance (Trainor et al., 2002) and rhythms

(Trehub & Hannon, 2006). Much like sensitivity dynamics to native language (Kuhl, 2004),

children exhibit reduced sensitivity to out-of-culture structural features (E. E. Hannon & Trehub,

2005a; Lynch & Eilers, 1992) and enhanced sensitivity to native ones (Politimou et al., 2021).

Critically, enculturation to novel musical systems persists at later stages of life, although it may

rely on partly different cognitive mechanisms (J. S. Johnson & Newport, 1989). Nevertheless,

it has been shown that adults can learn novel and entirely unfamiliar new musical systems

by mere passive exposure (Loui & Wessel, 2008; Loui et al., 2006; 2010), which can even

subsequently modulate tonal expectations (C. L. Krumhansl et al., 2000; Oram et al., 1995).

Listening to music is an inherently active cognitive process, as we predict upcoming musical
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events in terms of how we might generate it ourselves (Fogel et al., 2015) (c.f. chapter 2). This

presupposes the existence of an internal model of the musical syntactic structure that guides

the listener’s expectations –or predictions– of the next notes. This is evidenced by studies using

priming paradigms and response times (RTs) to investigate the relative predictability of specific

musical notes or chords found that RTs were correlated with expectation –low expectation

yielding slower RTs– for both musicians and non-musicians (J. J. Bharucha & Stoeckig, 1987;

Bigand & Pineau, 1997; Tillmann et al., 2006; 2007). Such behavioral evidence suggests that

musical enculturation essentially implicates implicit learning of the statistics of a musical corpus

(Bigand & Poulin-Charronnat, 2006; M. Rohrmeier & Rebuschat, 2012; M. Rohrmeier et al.,

2011). Studies indeed show that listeners are able to acquire the regularities of new artificial

musical systems by just being exposed to them (Loui & Wessel, 2008; Loui et al., 2006; 2010; M.

Rohrmeier & Cross, 2009; 2013; M. Rohrmeier et al., 2011) and that the same ability also holds

for musical systems with microtonal tuning (Leung & Dean, 2018) and out-of-culture musical

systems (M. Rohrmeier & Widdess, 2017). A recent study reported that adult participants were

even able to learn the regularities of two artificial musical grammars by just listening to them

(Guillemin & Tillmann, 2021), a learning process that is known to be preserved in amusic

listeners (Omigie & Stewart, 2011), suggesting that it exploits a domain-general mechanism.

Cross-cultural studies on statistical properties of pitch sequences have also consistently revealed

culture-specific responses to one’s own musical culture across varied musical cultures, both with

musicians: German, American, and Hungarian (Unyk & Carlsen, 1987), Finnish and Western

(C. L. Krumhansl et al., 1999), and North Sami Yoiks and Western (Eerola et al., 2009; C. L.

Krumhansl et al., 2000), and non-musicians: Western and Balinese (Kessler et al., 1984), and

Chinese and American (C. L. Krumhansl, 1995) listeners.

Therefore, there is ample and consistent evidence that exposure to the evolving musical en-

vironment triggers changes in response to the newly acquired musical systems and that adjusted

computational models could model those changes(Tillmann, Bharucha, & Bigand, 2000).

4.1.0.2 Learning to Enjoy

Music theorists have postulated that making predictions and experiencing pleasure during

music listening go hand in hand (Meyer, 1956). This translates into a non-linear inverted U-

shape distribution, meaning that too simplistic or too complex musical excerpts are associated

with less musical enjoyment, in line with the Wundt effect (Berlyne, 1971; Chmiel & Schubert,

2017; Huron, 2006), as illustrated in Figure 4.2. Supporting this, two recent studies applying

IDyOM (Cheung et al., 2019; Gold, Pearce, et al., 2019) show a non-linear relationship between

the computational modeling of musical expectations and self-reports of musical pleasure.

A large body of evidence has demonstrated that dopaminergic regions (the ventral stria-
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tum and caudate in the basal ganglia and the substantia nigra/ventral tegmental area in the

midbrain) are activated by pleasurable music (Blood & Zatorre, 2001; Ferreri et al., 2019;

Koelsch, 2020; Mas-Herrero et al., 2021; Salimpoor et al., 2011). Consequently, recent models

of musical pleasure have attempted to bind these two threads together, suggesting that musi-

cal pleasure emerges from the increased activation of these dopaminergic and reward-related

regions (Salimpoor et al., 2015).

Recent findings also suggest that dopaminergic neurons projecting to the ventral striatum

encode a reward prediction error driven by musical stimuli (Gold, Mas-Herrero, et al., 2019).

This study used a decision-making task in which participants learned which cues led to more

probable endings. Critically, the authors reported that the prediction error generated by unex-

pected events correlated with brain activity in the ventral striatum. Another study, supporting

the same hypothesis (Shany et al., 2019), showed that self-reports of musical expectation (us-

ing subjective surprise behavioral ratings C. L. Krumhansl, 1997) correlated with self-reports

of musical pleasure and importantly, also with increased activity in dopaminergic and reward-

related structures (including the ventral striatum). On the other hand, a recent study provides

a more nuanced view and calls for a different role of the ventral striatum in the network re-

sponsible for musical pleasure. Using IDyOM to compute musical expectations in sequences

of chords, Cheung and colleagues argue that the ventral striatum plays an ancillary role in

the generation of the pleasurable experience (Cheung et al., 2019). According to this study,

the dopaminergic ventral striatum encodes the degree of uncertainty and modulates attention

deployment in the amygdala, hippocampus and the auditory cortex, the critical regions that

encode musical predictions.

Even if the community is unable to agree on the neural implementation of the prediction-to-

pleasure relationship, it is clear that there is a relationship between i) the statistical structures of

the musical stimuli, ii) the prediction error, and iii) the musical self-reported pleasure. We can

therefore draw a clear red line between musical enculturation and musical enjoyment through

this story: Our brain models a prediction model of the musical environment based on the music

we have been exposed to. This prediction model is later used to predict the next incoming

music. The prediction error, which assesses the extent to which our inner model of consistent

with the new incoming stimuli, is encoded in the auditory cortex (c.f. chapter 2) and probably

sent to the reward areas possibly in the form of the uncertainty of the events in the case of

the ventral striatum. The activation of those neurons generates musical pleasure that could be

self-reported by listeners in the form of an inverted U shape. It is therefore our internal model

of musical predictions that shapes our perception toward liking certain songs and not others.

This is why we like to call musical enculturation the process of learning to enjoy music.
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4.1.0.3 Limitations and Scientific Contribution

However, the community lacks evidence for a within-subject link between enculturation and

self-reported pleasure. Other questions are crucial for the understanding of the building of mu-

sical preferences such as the persistence of the enculturation mechanisms, and the associated

neural markers.

We, therefore, propose here a set of projects that investigate the neural underpinnings of

Musical Enculturation. Those projects are divided into two panels: i) an electro-physiology

panel using EEG in humans and ECoG in ferrets and ii) a brain imaging panel using fMRI in

humans and FUS in ferrets. Having data from both ferrets and humans allows having a better

and more precise view of the neural mechanisms (using invasive recordings in ferrets, which

is usually not possible in humans) supporting musical enculturation.

As some studies of this project are still ongoing and unpublished this chapter presents the

already collected data and preliminary analyses. I designed the experimental protocols along

with the persons who collected the data (credited in each section) and Claire Pelofi and I con-

ducted the analysis of the data and the generation of the figures (except with explicit mention).

Shihab Shamma supervised the scientific process and will proofread the manuscripts of all those

studies.

4.1.1 EEG and Self-Reported Pleasure in Humans (recorded by

Guilhem Marion & Camille Barbarot at ENS, Paris)

4.1.1.1 Method

EEG
recording

EEG
recording

corpus A corpus B corpus A’

AT-HOME EXPOSURE
EEG

recording

EEG
recording

corpus A’’

NO EXPOSURE

Figure 4.1. Schematic presentation of the EEG experiment.

We recruited 34 French participants living in Paris (mostly non-musicians) and divided them

into two groups: a control group (15 participants) and a test group (19 participants). The

experiment consisted of 3 EEG recordings and 1 at-home exposure phase.

Recording #1 Participants come to the lab and listen to about 30 minutes of unfamiliar Chi-

nese music from the region of Shanxi. Their brain is recorded by the EEG system during

the entire experiment. After each song, they are asked to self-report the amount of plea-

sure they feel while listening to the song. They are able to take a break. At the end of the
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recording, they are randomly assigned to the control or test group and are given access

to a lab-made streaming platform in which we can monitor what they can listen to.

Exposure phase Each participant is asked to listen to at least 30 minutes each day for 2 weeks.

The test group has access to unknown songs (not present in the recording #1) of Chi-

nese music from the region of Shanxi (same genre as during the recordings) played on a

Guzheng (Chinese instrument that was also used for the EEG stimuli). The control group

has access to Bach chorals (assumed to follow the same musical structures as the partici-

pants have been exposed to throughout their life) played on the Guzheng. Therefore, we

control for the behavior of listening to music on our streaming platform and the timbre

of the songs. The only difference between the control and the test group is the musical

structures present in the songs they are exposed to.

Recording #2 After 2 weeks of exposure, participants come back to the lab and undergo the

same procedure as for recording #1. We add 15 minutes of new songs (not played during

recording #1 nor in the exposure) to check for the potential remembering of the songs

already played during recording #1.

Resting phase Participants (of both groups) do not do anything for 2 months and can pursue

their normal behavior of music listening.

Recording #3 After the 2-month resting phase, participants come back to the lab and undergo

the same procedure as for recording #2. We add 15 minutes of new songs (not played

during recording #1, nor recording #2, nor the exposure) to check for the potential

remembering of the songs already played during recording #1 or recording #2.

A schematic description of the experiment is given in Figure 4.1.

4.1.1.2 Results

Self-reported Pleasure Ratings Music theorists have postulated that making predictions and

experiencing pleasure during music listening go hand in hand (Meyer, 1956). This translates

into a non-linear inverted U-shape distribution, meaning that too simplistic or too complex

musical excerpts are associated with less musical enjoyment, in line with the Wundt effect

(Berlyne, 1971; Chmiel & Schubert, 2017; Huron, 2006), as illustrated in Figure 4.2. Support-

ing this, two recent studies applying IDyOM (Cheung et al., 2019; Gold, Pearce, et al., 2019)

show a non-linear relationship between the computational modeling of musical expectations

and self-reports of musical pleasure.

It is therefore assumed that while rating new unfamiliar music participants will fall into the

right side of the inverted-U shape and therefore won’t feel the maximal pleasure. However,
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Figure 4.2. According to the Wundt effect, an intermediate level of predictability generates the
maximal self-reported pleasure.

over enculturation, those participants will get more familiar with and will learn to predict the

music better. We then hypothesized to see a drift of the musical pleasure toward the center of

the inverted-U shape and therefore see an increase of the self-reported pleasure overexposure

for the test group and not in the control group.

Figure 4.3 shows the change in self-reported pleasure between i) the first session and the

second session and ii) the second and third sessions. Between the two first sessions, the test

group was exposed to Chinese music (and therefore is expected to get more familiar with it),

and the control group to Western music, both played on the Guzheng, a Chinese instrument.

We observe that there is a significant increase in the pleasure ratings for the test group which

reflects the left shift in the inverted-U shape. We also observe a decrease in pleasure ratings for

the control group which probably reflects the habituation of the timbre of the Guzheng with

Western music. Participants were then more likely to predict the music as Western and were

worse at predicting the Chinese notes after the exposure to Bach.

The right panel shows that the opposite effect was present after the resting period. This is

nice evidence of the decay of the previously shown learning.

Topographic Change Over Time Many studies investigating the neural underpinnings of mu-

sical expectation showed that expectedness was encoded in the ERP amplitude around 200ms

from the note onset with greater amplitude for unexpected notes(Di Liberto, Pelofi, Bianco,

et al., 2020; Di Liberto et al., 2021; Lee et al., 2019; Marion et al., 2021; Omigie, Pearce, et al.,

2019; Omigie et al., 2013a). An enculturation process should therefore affect those neural

responses.

Figure 4.4 shows that both control and test participants have their ERP amplitude at 200ms
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Figure 4.3. Change in pleasure ratings (after - before). An increase (mean above 0) means
that participants increased their liking of the pieces. Those figures show the change induced
by the exposure phase (left panel) and the resting phase (right panel) and show, respectively,
the learning of a new musical grammar, and its decay after 2 months of no exposure. We can
see that the effect of the exposure in the test group induced an increase in the pleasure ratings
that have been partly erased after the resting phase, which is clear evidence of the learning of
the new musical grammar and its decay.

affected by the exposure. This effect in the control group is explained by an increase in the SNR.

Indeed, familiarity with the experiment (stress, ...) generally improves the SNR and generates

a bigger response at the maximal time-latency of the neural response. However, this change at

200ms was significantly different between the two groups and the control group had a greater

response than the test group, which is consistent with the previous literature about musical

expectation.

The bottom panel shows that the resting phase has no effect on the control group which

supports the hypothesis of SNR improvement for the change in the ERP after exposure. More-

over, the resting phase has a very clear effect in the test group which showed an increase in the

ERP at 200ms. This is consistent with a decay of the learning as worse predictions generate

bigger ERP responses.

Expectation Modeling Using IDyOM IDyOM, a statistical model of musical grammars (M. T.

Pearce, 2005; 2018) has been used to model the EEG responses of Western listeners (Di Liberto,

Pelofi, Bianco, et al., 2020; Di Liberto et al., 2021; Marion et al., 2021; Omigie, Pearce, et al.,

2019; Omigie et al., 2013a) and showed a linear correlation between the amplitude of the ERP

responses at 200ms and the Information Content1 (IC) of the notes.

1The negative log-likelihood of a note x , referred to as information content, represents how well the model
predicted it given a context Xk−n:k. This computation is numerically stable with an interpretation in terms of
compressibility, the science of measuring information. For instance, events with high information content means
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Figure 4.4. Change in pleasure ratings (after - before). An increase (mean above 0) means
that participants increased their liking of the pieces. Those figures show the change induced
by the exposure phase (left panel) and the resting phase (right panel) and show, respectively,
the learning of a new musical grammar, and its decay after 2 months of no exposure. We can
see that the effect of the exposure in the test group induced an increase in the pleasure ratings
that have been partly erased after the resting phase, which is clear evidence of the learning of
the new musical grammar and its decay.

This correlation can be done using regression methods between the IC signal and the EEG

signal. Here we used the mTRF toolbox to compute a forward-lagged ridge regression between

the IC computed with IDyOM trained on the exposed Chinese music (using the long-term model

and a maximal order of 20 notes). We compared the correlations for each group before and

after exposure.

are hard to compress as they occur rarely, one can therefore say that they contain a lot of information. that
has been shown to provide good measures for psychological interpretations of perceptual data (Attneave, 1954;
Chater & Vitányi, 2003).
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Figure 4.5 shows a significantly different behavior between the two groups in terms of

correlation change after exposure. We clearly see an increase in the correlation for the test

group, which goes in the direction of the hypothesis.
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Figure 4.5

Disclaimer: This analysis is still ongoing, the results need to be double-checked and more

analysis has to be done. For instance, we will run this analysis for the last sessions to see the de-

cay of the learning. Then it would be interesting to check if all orders (temporal dependencies)

are learned or if statistics are only learned to a certain order.

4.1.1.3 Discussion

We showed clear evidence of statistical learning engendered by passive exposure to unfa-

miliar music by means of behavior (pleasure ratings), neural (ERP amplitude), and neurocom-

putational modeling (using IDyOM).

4.1.2 ECoG Recordings in Ferrets (recorded by Rupesh Kumar

Chillale at UMD)

4.1.2.1 Methods

We reproduced the protocol of the EEG experiments in ferrets.

Two ferrets were recorded for this experiment using exposure to Bach chorals instead of

Chinese music. Two sessions were conducted before and after a 1-month exposure.

Recording #1 The ferrets have been recorded while played 30 minutes of Bach chorals by

means of ECoG electrodes placed in the auditory cortex.
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Exposure phase The test ferret has been exposed to Bach chorals (different pieces than for the

recordings) 2h a day, 5 days a week for 5 weeks. The control ferret has been undergoing

psycho-physic experiments manipulating sounds similar to music.

Recording #2 All ferrets were recorded again on the pieces used in recording # 1. They were

also recorded while listening to a shuffled version of the stimuli. Those stimuli kept

their first-order statistics (scale, duration set, and tempo) and got shuffled higher-order

statistics. This serves to check whether the test ferrets were able to process better those

high-order statistics than the control ferrets.

4.1.2.2 Results

We replicated the analyses from the EEG experiment. Figure 4.6 summarizes those analyses.

Panel A shows the electrodes-averaged power ERP. We can see that the post-recordings have

a smaller amplitude than the pre-recordings for the test ferrets but not for the control ferret.

Panel C shows the same analysis as Figure 4.4 for the EEG. We computed the activity change

over time for the note-ERPs. The test ferret shows a clear negativity at about 150ms (which is

comparable to the responses at 200ms for the EEG) that is not present for the control ferret.

Finally, panel B shows the analysis using the IDyOM model, we see similar behavior as for

Figure 4.5 in EEG, which is that the exposure induced an increase in the correlation with the

statistical model of the exposed music for the test ferret but not for the control ferret.

4.1.2.3 Discussion

It seems that ferrets can learn the complex structure of music in a similar way to humans.

However, we still want to investigate what order of the statistics of the music the ferret is able

to learn.

4.1.3 Intracranial Electrodes and Single Cell recordings in Fer-

rets (recorded by Flavien Feral & Pierre Orhan at ENS,

Paris)

We recorded data from 3 ferrets using deep electrodes in the auditory cortex. These record-

ings will inform us of the internal mechanisms at the cell level. Those data have not been

analyzed yet.
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Figure 4.6. Results of the analyses on ECoG recordings on ferrets. Panel A shows that the raw
note-ERP power amplitude is higher before than after exposure for the test ferrets but not for
the control ferrets. Panel B shows that the statistical model of the exposed music (Western
music) increased after exposure for the test ferrets but not for the control ferrets. Finally, panel
C shows that there are greater changes at 150ms in the ERPs for the test ferrets but not for the
control ferret.

4.1.4 Imaging Section, with Emphasis on Reward and Pleasure

As shown in Figure 4.3 of the EEG experiment, enculturation is followed by an increase in

the self-reported pleasure of musical pieces that share the same musical grammar. On the other

hand, the literature on musical reward suggests that the mesolimbic striatum is highly involved

in behavioral musical pleasure, musical predictions, and learning(Zatorre & Salimpoor, 2013).

In addition, surprise and uncertainty from statistical models of music predict self-reported mu-

sical pleasure as well as activity in the nucleus accumbens (Nacc) and the amygdala (Cheung

et al., 2019). It is therefore easy to hypothesis that when the predictions are modified, the plea-

sure will, as well as the activity in the NAcc. However, the spatial resolution of EEG does not

permit this analysis. Therefore, we sought to complement our previous findings by measuring

the effects of musical enculturation via the same Bach and Shanxi music clips with fMRI rather

than EEG. The high spatial resolution of fMRI would then permit the direct analysis of NAcc.

Finally, using, in addition, a ferret animal model will shed light on the enigma of why humans

are the only social mammal that socially gathers around music. A huge corpus of literature in
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music cognition raises the hypothesis that the evolutionary argument of music in humans is

social bonding(Kathios & Loui, 2022; Savage et al., 2021; Stupacher et al., 2020; Trehub et al.,

2015). The reason why other mammals did not develop their sociability around music is still

an open question. One answer could be that the involvement of the reward system in music

enculturation was not developed enough. We here propose a group of experiments utilizing

musical enculturation and imaging techniques in humans and ferrets to tailor those questions.

Note that we went for a different experimental protocol than for the electro-physiology

panel. Here the subjects are exposed sequentially and recorded on two corpora. Therefore,

there is no need for a control group as we have control within each subject.

4.1.5 FUS Recordings in Ferrets’ NAcc (recorded by Jeffrey Boucher

at ENS, Paris, France)

4.1.5.1 Methods

One ferret has been implanted with a FUS window in the NAcc. The protocol consists of 3

recordings and two exposure sessions on Bach chorals and Chinese music from the region of

Shanxi.

Recording #1 The ferret has been recorded while played 30 minutes of Bach chorals and 30

minutes of Bach in shuffled orders.

Exposure # 1 The test ferret has been exposed to Bach chorals (different pieces than for the

recordings) 2h a day, 5 days a week for 5 weeks.

Recording #2 The ferret has been recorded while played 30 minutes of Bach chorals and 30

minutes of Bach in shuffled orders, the same pieces as during recording # 1.

Exposure # 2 The test ferret has been exposed to Chinese Shanxi music (different pieces than

for the recordings) 2h a day, 5 days a week for 5 weeks.

Recording #3 The ferret has been recorded while played 30 minutes of Bach chorals and 30

minutes of Bach in shuffled orders, the same pieces as during recording # 1 et #2.

4.1.5.2 Results

We only did preliminary analyses. We gave nutrical (treat for ferrets) to the ferret at regular

intervals and recorded. We then computed the evoked response to the nutrical and to the

musical notes. We did find a significant response (above noise) for the nutrical but not for the
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musical notes (even after exposure). This hints that ferrets are not rewarded when listening

to music, even after learning the structure. This means that the prediction error is not sent

to the reward system as it is for humans. However, we are doing more extensive analyses to

double-check this result.

4.1.6 fMRI in Humans (recorded by Sean Paulsen & Michael Casey

at Dartmouth, USA

4.1.6.1 Methods

We replicated the protocol of the FUS experiment which consists of 3 recordings and two ex-

posure sessions on Bach chorals and Chinese music from the region of Shanxi. The experiment

is conducted with 10 participants, the data collection is still ongoing.

Recording #1 Participants have been recorded while played 30 minutes of Bach chorals and

30 minutes of Shanxi music in shuffled orders. They had to self-report how much pleasure

they felt while listening to each song.

Exposure # 1 The participants are asked to listen to at least 30 minutes of music every day

for 2 weeks on the same online streaming platform as for the EEG experiment. Bach

chorals are played on this platform (but exposure #1 and #2 are interchanged every two

participants).

Recording #2 Participants have been recorded while played 30 minutes of Bach chorals and

30 minutes of Bach in shuffled orders, the same pieces as for recording # 1.

Exposure # 2 The participants are asked to listen to at least 30 minutes of music every day

for 2 weeks on the same online streaming platform as for the EEG experiment. Chinese

music from the region of Shanxi is played on this platform (but exposure #1 and #2 are

interchanged every two participants).

Recording #3 Participants have been recorded while played 30 minutes of Bach chorals and

30 minutes of Bach in shuffled orders, the same pieces as for recording # 1 and # 2.

Participants gave their written informed consent for each scan in accordance with the Insti-

tutional Review Board at Dartmouth College. They completed a brief questionnaire to deter-

mine eligibility. All participants responded that they had actively listened to Western classical

music for more than 5 years of their life, and Chinese folk music for 0 years. All were thus

deemed eligible. Upon arrival for each scan, the participants filled out a screening form to
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confirm they could be scanned safely. They were each compensated $60 USD after the second

session.

Each scan consisted of 8 runs. Each run began with two TRs and then consisted of four

“blocks,” which themselves consisted of four “trials.” The design of a single trial is shown in

Figure 4.7. All trials in a given block are the same style, resulting in 48 trials for each style per

scan. There is no time between trials. A randomized jitter value between 4 and 7.5 seconds is

assigned to the beginning of each trial to decouple the evoked response from elapsed time and

prevent a consistent expectation of music starting. The parameters were 1mm3 voxels and a

1.5s TR.

Figure 4.7. The design of each trial during scanning. A randomized jitter value between 4 and
7.5 seconds is assigned to the beginning of each trial to decouple the evoked response from
elapsed time and prevent a consistent expectation of music starting. The compensation lag is
calculated such that the Pleasure Rating prompt appears after 39s, although this prompt only
appears at the end of each block. Each participant’s functional data consists of 8 runs, each of
which had 4 blocks with 3 trials in each block. Each block was either all Bach or all Shanxi. Half
of the blocks for each participant were Bach and the other half Shanxi. The arrangement of
blocks was randomized for each participant. The two sessions for each participant had identical
stimuli presentation. Figure taken from Sean Paulsen’s PhD thesis

4.1.6.2 Preliminary Analyses

Self-reported pleasure We first plan to replicate the analysis we did in the EEG experiment

using self-reported pleasure. We plan two analyses, both are based on the idea that we have

access to the self-reported pleasure ratings. Therefore, we can align them for each session,

and compute the difference so we have the change induced by exposure #1 and exposure #2.

Then, for each participant, we have as many numbers as songs for the first exposure and for

the second exposure. Now we can divide those numbers into two groups: Bach and Chinese.

So you have 4 sets for each participant:

• BachSTIM-firstExposure

• ChineseSTIM-firstExposure
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• BachSTIM-secondExposure

• ChineseSTIM-secondExposure

Now you have to flag which ones are congruent. For instance, if the participants were exposed

to Bach in the first exposure and Chinese in the second exposure, it will be:

• BachSTIM-firstExposure (congruent)

• ChineseSTIM-firstExposure (incongruent)

• BachSTIM-secondExposure (incongruent)

• ChineseSTIM-secondExposure (congruent)

It is now just a matter of ordering those values. Two interesting analyses could be done (cf

Figure 4.8):

Tracing the learning Concatenate all the values over all the participants whether the stimuli

are Chinese or Bach and if they are congruent or incongruent. Then, we’ll have 4 sets,

it’s just a matter of plotting them. In Figure 4.3 I chose to plot the raw distribution and

to fit a normal distribution on them, but this is not necessary.

Effect of the Exposure Order This is to check whether the effect is different for the first or

second exposure. So now instead of concatenating them according to whether the Stimuli

are Chinese or Bach, just do it whether they are first or second exposure.

We expect to see a significant effect or congruent/incongruent but no significant effect or

first/second exposure. Figure 4.8 shows the expected results.

***

**

incongruent congruent incongruent congruent

Chinese Songs Bach Chorals 

1st exposure 2nd exposure

Congruent Incongruent

1st exposure 2nd exposure

A B

Figure 4.8. Expected results for the self-reported pleasure analysis.
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fMRI Contrast Analysis We want to know what areas were affected by the exposure. Given

one matrix (time * voxels) for each stimulus/participant/session. We want to compute the

difference between each session, so we can see the effect for the first session and the second

session, for each participant. It is a matter of computing the difference between those matrices

for each stimulus and then averaging across stimuli (or keeping the variance for later). Then

those difference maps (because we kept the voxel dimension) can be congruent or incongruent

and we want to assess that the differences are greater for the congruent dimension. We can

compute which voxels are significantly different and look at those maps for the congruent and

incongruent conditions (it would be great to also see it for Chinese and Bach). We hypothesize

to see differences in the incongruent condition as well. If the areas are overlapping between

congruent and incongruent we can look at the difference between congruent and incongruent

and look at this map (after FDR-corrected p-value thresholding).

Anatomical fMRI We also plan to check whether the anatomical scans during the resting state

before the experiment (maps of white/grey matter) are affected by the exposure. We have 3

scans for each participant, we can compute the contrast and see what areas changed when the

participant was exposed to Chinese and when the participant was exposed to Bach. We should

see the auditory cortex and the pre-frontal areas (where the predictions are supposed to be

sent from c.f. chapter 3), but not the reward system (where only the prediction error should

be encoded), which should be affected by exposure only on functional scans.

4.1.7 General Discussion

We showed clear evidence of statistical learning produced by passive exposure to unfamil-

iar music using behavior (pleasure ratings), neural (ERP amplitude), and neurocomputational

modeling (using IDyOMpy). Those findings are in line with the previous literature showing

that computational models of music are good models for enculturation(M. T. Pearce, 2018;

Tillmann, Bharucha, & Bigand, 2000) and that passive exposure to unfamiliar music does in-

duce changes in the way humans predict musical events(Loui, 2012).

Also, it is the first time a study shows that enculturation also increases the musical pleasure

felt while listening to music following the same structure, without being the same pieces, of the

exposed music. This is a new and very strong evidence for the already demonstrated relation-

ship between musical predictions and pleasure, and in a more general way, musical enjoyment,

as discussed in the introduction.

Showing that this hypothesis is true is strong evidence that musical enjoyment is defined

culturally through musical enculturation and that this process occur throughout our entire life.

Still, there is no evidence of the Wundt effect for musical pleasure and predictions in non-
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Western populations. It is therefore possible that this effect is, as others (c.f. chapter 5), socio-

culturally defined and represents a cultural way to extract aesthetic value from music in Western

societies. It is indeed important to replicate such experiments in non-Western populations and

newborns to rule out this hypothesis.

On the other hand, we showed for the first time a physiological neural adaptation to pas-

sive exposure to unfamiliar music. This is the first neural evidence of the first hypothesis of

the Predictive Coding Theory for Music, as defined by Pearce(M. T. Pearce, 2018): The statis-

tical learning hypothesis. This hypothesis claims that the brain is always updating an internal

statistical model of the music of our own culture. As shown in the introduction of the chapter,

behavioral evidence has been discovered since the 90s, however, the field was missing a clear

neural validation of this hypothesis. This consolidates an entire part of the field of music cogni-

tion that, starting in the 50s(Meyer, 1956), claimed that musical expectations were a cognitive

root for perception (c.f. section 2.1). This thesis gave more neural validations of the first Pre-

dictive Coding hypothesis (Probabilistic Prediction Hypothesis) by showing predictive signals

during moments of natural silences in ecologically valid music. We, therefore, think that we

have been taking part in the field effort to push this theory to the front of the stage.

It is, however, evident that some of our work is still in progress (analysis of fMRI and FUS

data). We hypothesize that fMRI will be strongly affected by the enculturation, especially in

the NAcc. This hypothesis is directly derived from the literature about musical pleasure and

its neural roots in the relationship with musical predictions(Cheung et al., 2019; Zatorre &

Salimpoor, 2013). Also, because we saw an increase in self-reported musical pleasure and that,

in the case of familiar music, hemodynamic activity in the NAcc is associated with increasing

self-reported pleasure(Zatorre & Salimpoor, 2013), we have strong reasons to believe in the

hypothesis. However, it is very unclear whether such a mechanism will be shared with the

ferrets. Indeed, the Wundt has only been validated in Western populations (using familiar and

unfamiliar music)(Chmiel & Schubert, 2017) and, as discussed before it is unclear whether it is

from a social construct of the aesthetic experience or a physiological root of learning(Ripollés

et al., 2014; 2016; 2018). The idea that learning and pleasure often co-occur(Ripollés et al.,

2014; 2016; 2018) and that, in the case of music, pleasure occurs in cases where a statistical

model would get an efficient optimization (Gold, Mas-Herrero, et al., 2019) is an argument for

an evolutionary ancient root of the link between those two mechanisms. Discussing the cross-

species validity of this mechanism would be able to rule out this question and could explain

why human societies massively socialize around music whereas other mammals such as ferrets

don’t.
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5 WHAT DRIVES MUSICAL PREFERENCES?
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5.1 General Introduction To Musical Preferences

It is evident that musical preferences and more generally music perception and listening

behaviors differ between individuals. Spotify can nowadays provide databases to investigate

those questions and studies show drastic differences between individuals and a great amount of

this variance can be explained by socio-cultural and demographic factors. First, listeners prefer

music from their own culture over music from other cultures, as shown through ethnicity (Ap-

pleton, 1971; Fung, 1993; Killian, 1990; LeBlanc, 1979; Meadows, 1970), even through non-

explicit identification(May, 1985; McCrary & Gauthier, 1995; Teo, 2005), geographical vari-

ables(Mellander et al., 2018), Spotify data(Thomas, 2017) and cross-cultural studies(H. Lee

et al., 2021). Beyond cultural factors, two models have been presented to explain the relation-

ship between socioeconomic background and music preferences within a single culture. First,

the model of Cultural Legitimacy was presented and validated in France(Bourdieu, 1979) and

in the USA(Baumann, 1958; Schuessler, 1948) before the ’80s. This model claims that higher

social classes consume largely music considered more sophisticated or associated with a higher

cultural value (such as classical and contemporary music and opera) and reject other forms of

popular music as a legitimacy mechanism for affiliation to their social group. However, since

the 90s another model called Omnivore/Univore has been presented by Peterson(Peterson,

1992) and empirically validated by studies in France (Coulangeon, 2005), USA(Peterson &

Kern, 1996; Peterson & Simkus, 1992; White, 2001) and in the Netherlands(Van Eijck, 2001).

This alternative hypothesis claims that social classes are differentiated by the variety in their

music preferences rather than in a specific genre, with a trend of higher class listening to a

broader range of musical genres. Studies from (White, 2001) using data between 1982 and

1997 in the USA show a temporal trend of a replacement of the Cultural Legitimacy model by

the Omnivore/Univore model and that “cultural exclusivity is no longer valued as it may have

been in the past and is more often a sign of ignorance rather than status”. However, it has

been still shown in France in 2003 that higher classes, even if principally distinguished by their

omnivoreness, also tend to listen to more art music (classical and opera principally) than lower

social classes(Coulangeon, 2005), showing that even if the most explanatory model switched

from Cultural Legitimacy to Omnivore/Univore, the two of them still cohabit.

The idea that individuals within given social groups have similar musical preferences could

be explained by the social agreement hypothesis. It has indeed been shown that listeners change

their musical preferences to agree with peers(Alpert, 1982; Furman & Duke, 1988) or avoid dis-

agreement(Furman & Duke, 1988; Inglefield, 1968; 1972) especially when the pairs represent

an authority figure in term of musical taste(Alpert, 1982; Inglefield, 1972; Tanner, 1976). This

idea follows the general idea that sociocultural familiarity increases music preferences(Droe,

2006) and elicits stronger emotional responses(Ritossa & Rickard, 2004).
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Familiarity can be seen through different processes. First, listeners tend to prefer musical

content that is already known as shown by explicit short-term repetitions of excerpts of clas-

sical music, including both tonal and atonal compositions(Gilliland & Moore, 1924; Margulis,

2013; Mull & Hennessy, 1957), jazz music(Verveer et al., 1933), Korean music(M. K. Johnson

et al., 1985), Pakistani music(Heingartner & Hall, 1974), or by long-term exposure to spe-

cific pieces(Martindale & Moore, 1989; Martindale et al., 1990). It can also be defined using

the idea of predictability. Listeners, when presented with new musical content, would prefer

pieces containing more statistical patterns shared with their own musical culture. For instance,

American infants preferred (measured using looking-time) Western meters over Balkan me-

ters whereas Turkish infants, familiar with both Western and Balkan meters, demonstrated no

preferences(Soley & Hannon, 2010). Memory has even been demonstrated to correlate with

familiarity cross-culturally as memory accuracy for Western melodies was better for Western

participants than Turkish participants and the opposite; in addition, Chinese melodies (as con-

trols) generated very bad memory accuracy for both groups(Demorest et al., 2008). Both pre-

vious examples have been replicated and confirmed using prediction hypotheses with melodies

containing statistics less consistent with Western culture (as assessed by statistical models);

They engendered less memory accuracy in Western listeners (K. Agres et al., 2018; K. R. Agres

et al., 2013). Furthermore, western infants were able to detect metric irregularities in Western-

metered musical pieces, and also in Balkan-metered pieces but only after a week-long of at-

home exposure to Balkan music(E. E. Hannon & Trehub, 2005a; 2005b).

In 1971, Berlyne proposed a model of such mechanisms by suggesting that an inverted U-

shape (Wundt curve) would relate familiarity and preference(Berlyne, 1971). He argued that

the reward system is activated by increasing arousal with exposure to certain patterns, but over

time, the aversion system opposes this activation, leading to the increasing dominance of the

aversion system as arousal continues to increase due to subsequent exposure. This effect has

been validated by many studies (review in (Chmiel & Schubert, 2017)) and a study using fMRI

showed that familiar music activates emotion-related limbic and paralimbic regions as well as

the reward circuitry to a greater extent than unfamiliar music(Pereira et al., 2011). Recently,

two studies using a statistical model of music (IDyOM) showed a Wundt curve between the

computational modeling of musical expectations and self-reports of musical pleasure(Cheung

et al., 2019; Gold, Pearce, et al., 2019) as well as modulation of the activity in the reward-

related region of the ventral striatum induced by the expectation (Gold, Mas-Herrero, et al.,

2019; C. L. Krumhansl, 1997; Shany et al., 2019) or the uncertainty(Cheung et al., 2019) of

the musical events. This literature seems to show a clear line between cultural environments

and musical preferences. The most striking limitation of those studies is that they are almost

all based on questionnaires of self-reported musical genre preferences that are very likely to be

biased and shaped by socio-cultural affiliation and agreement and not a direct observation of
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music cognition. We propose that there are three forms of musical preferences: i) the music we

say we like, measured by self-report of genre preferences, we think it is very influenced by genre

and socio-cultural affiliation; ii) the music we actually listen to, measured by listening habits,

e.g. through Spotify data which we believe is influenced by both cognition and socio-cultural

affiliation; finally iii) the music we actually like as measured by cognitive experiments on ratings

(or objective measures) on unknown music pieces, which we believe is mainly influenced by the

prediction familiarity described before. It is clear that those three forms of musical preferences

are correlated and intertwined, however, we posit that they result in different results and that

their comparison could allow us to better understand the different factors influencing music

perception.

From the literature, it is not clear that sociocultural factors could entirely explain the vari-

ance of musical preferences, meaning that there probably exist individual differences caused

by the unique life experiences and physiology of the individuals. Personality being the first

candidate for such differences, Rentfrow and Gosling (2003)(Rentfrow & Gosling, 2003) used

the STOMP (Short Test of Musical Preferences) and observed that individuals with a prefer-

ence for Reflective and Complex styles (such as classical and jazz) tend to have higher levels of

Openness to Experience (as measured using the Big Five Personality test), perceive themselves

as more intelligent, and have lower self-perceived athleticism. On the other hand, those who

prefer Rhythmic and Energetic styles (such as electronic/dance and hip-hop) are more likely

to exhibit higher levels of Extraversion and Openness to Experience, and perceive themselves as

more athletic. However, a meta-analysis (combining 263,196 participants) on the relationship

between personality traits and music preferences(Schäfer & Mehlhorn, 2017) finds that while

there were small correlations for particular styles and traits, particularly between openness

to experience and soft rock R’n’B, Classical and avant-garde, personality traits have limited

predictive power in explaining interindividual differences in music preferences. Physiology

could also be an explanation, but the few studies that have studied the relationship between

heart rate and preference for certain tempi have exhibited contradictory results. Two studies

investigated the genetics components of musical preferences (shown to be very small for face

preferences(Germine et al., 2015) but not absent) generated contradictory results on non-direct

observations of musical preferences (through cultural preferences(Faust, 1974) and choice for

instruments(Mosing & Ullén, 2018)).

5.1.1 Scientific Contribution

This is why we propose in this chapter a new study aiming at a direct comparison between

the genetic and socio-economic components of musical preferences through a Twin study in-

volving 30k twins from Sweden and the UK. Because this study will explicitly compare the
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amount of variance explained by heredity and by social classes it is a good way to rule out

some of the hypotheses about the vectors of the variance in terms of musical preferences and

enrich the literature, mainly sociological, with physiological findings.

We will then present a new paradigm for studying the sociology of musical preferences

through an original protocol consisting of i) a cognitive experiment; ii) a questionnaire about

the socio-cultural environment and genre preferences; and iii) a semi-conducted interview

about the music listening habits and present a cross-cultural validation of it. This study aims at

replicating the previous findings in sociology but using other measures for musical preferences

than solely questionnaires about musical genres. Indeed, as discussed earlier, we think that

musical preferences could be measured by different means and that those different measures

could reflect different aspects of the socialization around music. This new study will be able to

uncover those different measures in a multi-site study in Paris and Rome.

Finally, taken together, these studies will compare multiple socio-cultural and genetic vari-

ables in a regression fashion and will be able to compare what exact variables explain the

variance. This could result in decisive arguments for the enculturation theory that we are

drawing here, as internalized socialization (also called habitus in sociology) could be seen as

a passive learning, social reproduction, or even classical reproduction mechanism. Therefore,

the scientific question we are asking here is whether the cognitive process of enculturation is

actually the same as the social reproduction mechanism defined by sociology and whether it

explains more variance than genetics.

This chapter will present two new studies: a genetic Twin Study and a sociology study. I

decided to design the genetic study from the lack in the literature. I built collaborations with

Miriam Mosing, Frederic Ullén, and Margherita Melanchini to have access to Twin cohorts.

We found a collaboration where they gave me access to already collected data in England

and Sweden (datasets are presented later). I designed and wrote the following description of

the project and will be conducting the analyses, probably with the help of Giacomo Bignardi,

PhD student working with Miriam Mosing. I designed the sociology project for similar reasons

discussed in this introduction. I have been helped by very informative discussions with Gisèle

Dambuyant, a French sociologist. The project has been supported by the École Française de

Rome which funds projects in social sciences and mobility grants in Rome. The presented

documents can be considered as pre-registration (even if not published yet) documents for

those studies that will contain, at least, the persons cited before as authors. Shihab Shamma

supervised the scientific process and will proofread the manuscripts of all those studies.
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5.2 Genetic Components of Musical Preferences: A

Twin Study

5.2.1 Introduction

Multiple studies in the field of sociology showed that the socio-economic environment

shapes musical preferences. The initial model elucidating this association is the Cultural Legit-

imacy model, first expounded and substantiated in France by Bourdieu (Bourdieu, 1979), and

earlier in the USA (Baumann, 1958; Schuessler, 1948). This model posits that higher social

strata predominantly engage with music perceived as more sophisticated or possessing greater

cultural value (such as classical, contemporary music, and opera) while dismissing other forms

of popular music. This behavior serves as a legitimacy mechanism for social affiliation with

their respective social stratum. However, from the 1990s onward, an alternative model known

as Omnivore/Univore, pioneered by Peterson (Peterson, 1992), gained prominence and was

empirically supported by studies conducted in France (Coulangeon, 2005), the USA (Peterson

& Kern, 1996; Peterson & Simkus, 1992; White, 2001), and the Netherlands (Van Eijck, 2001).

This alternative hypothesis suggests that social classes are delineated not by a preference for

specific musical genres but by the diversity of their music preferences, with a discernible trend

among higher social classes indicating a broader range of musical genre consumption. Investi-

gations conducted between 1982 and 1997 in the USA (White, 2001) demonstrate a temporal

shift from the Cultural Legitimacy model to the Omnivore/Univore model. This shift signi-

fies that the once highly regarded cultural exclusivity is no longer esteemed as it might have

been previously and is more frequently perceived as indicative of ignorance rather than social

status. Nonetheless, a study in France conducted in 2003 (Coulangeon, 2005) revealed that

even though higher social classes primarily distinguished themselves through omnivorous mu-

sical tastes, they still tended to gravitate towards more art music, predominantly classical and

opera, in comparison to lower social classes. This observation implies that despite the transition

from the Cultural Legitimacy model to the Omnivore/Univore model as the more explanatory

framework, both models persist concurrently.

The idea that individuals within given social groups have similar musical preferences could

be explained by the social agreement hypothesis. It has indeed been shown that listeners change

their musical preferences to agree(Alpert, 1982; Furman & Duke, 1988) or avoid disagree-

ment(Furman & Duke, 1988; Inglefield, 1968; 1972) with peers especially when they represent

an authority figure in term of musical taste(Alpert, 1982; Inglefield, 1972; Tanner, 1976). This

idea follows the general idea that sociocultural familiarity increases music preferences(Droe,

2006) and elicits stronger emotional responses(Ritossa & Rickard, 2004). This hypothesis,
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which is the most present in the literature of sociology(Bourdieu, 1979; Coulangeon, 2017;

White, 2001) and psychology(M. T. Pearce, 2018; Pelofi et al., n.d.; Vuust, Heggli, et al., 2022b;

Vuust, Heggli, et al., 2022) of music proposes music preferences as a purely cultural and ac-

quired norm. However, there is no clear evidence that innate components in musical prefer-

ences do not exist.

For instance, personality seems to play a role in music preferences (as seen in the previous

section) (Rentfrow & Gosling, 2003; Schäfer & Mehlhorn, 2017) and personality traits from

the Big Five, consistently with the rest of the literature (Koenig, 2020; Zwir et al., 2020), have

been shown to be substantially heritable and explain 40–60% of the variance(Power & Pluess,

2015), it suggests the possibility that music preferences could also have a significant genetic

component. Moreover, social reproduction, defined by Bourideu as habitus has been recently

argued to have potential genetic components, especially as highbrow/lowbrow taste (perceived

as high- or low-cultural value for higher social classes), participation (a person’s involvement

in activities that provide interaction with others in society or the community) and cultural

omnivoreness, core elements of the social reproduction theory, have been shown to be notably

heritable. Especially, participation in highbrow, lowbrow, and popular culture has been found

to be, respectively, 47-70%, 59-67%, 48-61% heritable and 39-50% for self-reported music

omnivoureness(Jæger & Møllegaard, 2022).

To date, only two studies investigated the genetic components of musical preferences (shown

to account for 20% in face preferences(Germine et al., 2015)) which generated contradictory

results through unconventional measures of musical preferences. The first (Faust, 1974) con-

ducted a questionnaire about many aspects of personal preferences including like/dislike ques-

tions about classical instrumental, classical vocal, jazz, folk, and pop, and did not find any sig-

nificant genetic effect. A second more recent study investigated the specialization of musicians

for a specific instrument and musical genre. It found a significant effect of genetics(Mosing &

Ullén, 2018) showing that musical genre preference for music production is heritable but not

necessarily for music perception. Another interesting result from the sociology of music found

that women liked a wider range of styles, especially "serious" ones(Hargreaves et al., 1995).

Another study observed that females consistently showed more positive attitudes toward music

than males, particularly at younger ages(Crowther & Durkin, 1982). However, it is important

to consider the influence of culture, age, and country when interpreting gender-related prefer-

ences, as highlighted by (LeBlanc et al., 1999)

We, therefore, think that it would be interesting for the community of music cognition

to have a study on musical preferences and musical omnivorouness comparing the respective

effects of socioeconomic factors (as defined by income and occupation category) and genetics.

Moreover, testing the genetic effects on sex differences would allow us to make hypotheses on

gender differences in musical omnivourness.
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The Twin methodology consists of conducting a behavior measurement (here musical pref-

erences) on identical (MZ) and fraternal twins (DZ), which respectively share 100% or about

50% of their genetics but which both share the same environment (e.g., uterine environment,

parenting style, education, wealth, culture, community). Therefore, a trait that is purely herita-

ble would be identical for MZ twins but potentially different for DZ twins. Therefore, comparing

the correlation on the behavioral traits between MZ and DZ pairs allows us to conclude whether

the trait is largely driven by genetics (MZ pairs would be more correlated than DZ pairs), by

shared environment (both correlations are high but not different), or by non-shared environ-

ment (correlations are both low and comparable). The common model to estimate heritability

in twin studies is known as the ACE model (or its non-additive genes version, ADE)(Zyphur

et al., 2013). Twin studies using this model estimate how much the variation in a phenotype

is due to additive genetic effects (A), the common environment (C) or non-additive genes (D),

and the unique, random, environment (E). Structural equation modeling (SEM) partitions the

variance of a phenotype into these three components using maximum likelihood methods.

We propose five analyzes in order to assess to which extent musical preferences is heritable,

the amount of variance that can be exclusively explained by genetics and socio-economics and

shared familial background, and whether the gender differences could be supported by genetics

or socio-cultural gender norms. We will, therefore, i) compute the ACE analysis for 19 musical

genres, ii) compare the computed heredity with its lay-estimate (heritability estimated by non-

specialists), iii) test whether heredity is moderated by age, iv) test whether heredity differs by

gender, and finally v) conduct a multilevel modeling that includes socioeconomic data. All five

analyses will be conducted on two different datasets: the TEDS’ 18 Year Fashion Food and Music

Preferences and the Music Preference Questionnaire on the Swedish Cohort.

5.2.2 Data

5.2.2.1 TEDS

Study participants were twins from the Twin Early Development Study (TEDS)(Haworth

et al., 2013), a birth cohort of 16,810 families with twins born in England and Wales from

1994–1996. TEDS was previously shown to be reasonably representative of the general popu-

lation(Haworth et al., 2013). Requests to complete the online food preference questionnaires

were sent out to a subsample (3166 pairs; n= 6332 individuals) by letter and e-mail during the

year of their 18th birthday. Subjects were offered a £10 voucher to complete the survey, result-

ing in 3155 individual twins who consented to participate. This breakdown is representative

of typical monozygotic/dizygotic proportions observed in twin populations.

Date of birth, sex, and socioeconomic information (income, job, and education level of
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parents when twins were 16 years old) were collected in the baseline questionnaire. Zygos-

ity had previously been collected by using a parental report questionnaire completed in early

childhood. DNA analysis has shown the questionnaire to be .95% accurate(Price et al., 2012);

uncertain zygosity was determined from DNA.

The questionnaire contained questions about Fashion, Food, and Music Preferences. This

dataset includes a few questions about musical preferences, including ratings for 10 musical

genres that have never been used for any published study. The only two studies based on those

data are about drink (Smith et al., 2017)and food preferences (Smith et al., 2016). The 10

different musical genres were supplemented by examples of artists:

• How much do you like listening to Pop music (for example, music by Lady Gaga, Katy

Perry, Justin Bieber or Taylor Swift)?

• How much do you like listening to Hip Hop / Rap music (for example, music by Mackle-

more, Kanye West, Jay-Z and Eminem)?

• How much do you like listening to R&B / Soul music (for example, music by Beyonce,

Amy Winehouse, Adele and Iggy Azalea)?

• How much do you like listening to Rock music (for example, music by Linkin Park, Muse,

Arctic Monkeys, and Red Hot Chilli Peppers)?

• How much do you like listening to Metal music (for example, music by Metallica, ACDC,

Slipknot, Avenged Sevenfold and System of a Down)?

• How much do you like listening to Dance / Electronic music (for example, music by

Skrillex, Daft Punk, David Guetta and Calvin Harris)?

• How much do you like listening to Alternative / Indie music (for example, music by Lana

del Rey, alt-J, Bastille and Kings of Leon)?

• How much do you like listening to Jazz music (for example, music by Ella Fitzgerald, Ray

Charles, Louis Armstrong and Norah Jones)?

• How much do you like listening to Classical music (for example, music by Mozart, Bach,

Vivaldi and Beethoven)?

• How much do you like listening to Folk music (for example, music by Mumford and Sons,

The Lumineers, Of Monsters and Men and Noah and the Whale)?

Participants were asked to to rate how much they enjoy listening to music of each broad

genres using a 10-items Likert scale labeled as: 1=’Not at all’; 2-9=numbered; 10=’A lot’.
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5.2.2.2 Sweden Cohort

Swedish Twin Registry STAGE cohort includes 3̃2,000 adult twins born between 1959 and

1985. A web-based data collection ‘Humans making music’ in 2010/2011 was initiated by

Fredrik Ullén and followed up in 2021 as ‘Humans making music 2.0’ (HUMMUS). They contain

a rich array of questionnaires about musical engagement, music-related behavior and musical

aptitude tests.

Those questions contain a 7-item Likert rating for the following 19 musical genres: Classical

Music, Opera, Jazz, Blues, Reggae, Funk, Pop, Gospel, Rock, Soul, Metal, Electronic Music

(including techno and house), Hip-hop/rap, Indie/alternative rock, Dance Music, Latin,

Country, Sweden Traditional Music, and Folk/World Music.

The questionnaire also contains the self-reported number of hours of music listening per

week and socioeconomic questions including level of education, and occupation.

5.2.3 Analyses

5.2.3.1 ACE for Music Preferences

Intra-class correlations (ICCs) will be calculated for each musical genre as well as for the

overall musical preference (using multidimensional correlation over all musical genres) scores

for MZ and DZ pairs to provide an indication of the pattern of similarity for the two types of

twins. Maximum Likelihood Structural Equation Modelling (MLSEM) will be used to derive

precise estimates of A, C and E (with 95% confidence intervals and goodness-of-fit statistics)

based on the expected structure of the variance-covariance matrices for MZs and DZs.

This analysis will provide us with values for ACE for each musical genre and for the overall

musical preferences. Those values will be compared to ACE of other traits such as preferences

for food, color, and fashion.

5.2.3.2 Does Heredity Correspond to its Lay Estimate?

An independent data collection about music perception contained a question about the es-

timate of the heritability of musical preferences. We plan to compare the heritability computed

using the ACE model with the lay estimates computed an another cohort of participants. We

therefore will compare those values with other famous traits such as political beliefs, depres-

sion, ADHT, and height, c.f. Fig 5.1 for an estimated figure.

152 CHAPTER 5



Figure 5.1. Comparison of the musical preference heredity and its lay estimate with those for
different known traits.

AB Heredity Over The LifetimeMultilevel Analysis

Figure 5.2. A Hypotheses about the effect of the socio-cultural environment on music prefer-
ences over the lifetime. B Hypothesis the exclusive variance explained for socioeconomic and
genetic factors.
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5.2.3.3 Does the Effect of Environment Change Throughout Life?

In order to see whether the genetic components of musical preferences evolve during life we

plan to compare the A, C and E parameters over subgroups of different age. This analysis will

allow us to check the hypothesis that the non-shared environment (E) explains more and more

variance over age. This hypothesis rests on the social agreement hypothesis that states that

individuals change their musical preferences to agree(Alpert, 1982; Furman & Duke, 1988)

or avoid disagreement(Furman & Duke, 1988; Inglefield, 1968; 1972) within a social group,

in order to strengthen their sociocultural affiliation(Bourdieu, 1979). Once a moderator fitted

between age and E, we can see whether the E computed from the TEDS (participants aged of

18 yo) is consistent with the regression. See Fig 2.A for a hypothesis illustration.

5.2.3.4 Heredity By Gender

If twin correlations suggest sex differences, sex-limitation models will be fitted for the musi-

cal genres, as well as for the general musical preferences. These models test whether the mag-

nitude of A, C, and E differ for males and females (quantitative sex differences), and whether

the genetic and environmental influences are the same or different for males and females (qual-

itative sex differences)(Neale & Cardon, 1992). This analysis will allow to conclude whether

the gender differences in music preferences observed in sociology studies are due to genetic or

sociocultural norms.

5.2.3.5 Multilevel Twin Modeling Including Socioeconomic

Twin modeling is commonly addressed within the context of structural equation modeling

(SEM)(Rijsdijk & Sham, 2002) as a one-level model where the family serves as the primary

sampling unit. However, the analysis of twin data can also be approached from the perspective

of multilevel models (MLMs). A classic illustration involves children as level 1 units clustered

within classes at level 2, which in turn are clustered within schools at level 3(Sellström & Brem-

berg, 2006). Detailed insights into the CTM within the MLM framework, along with illustrative

code and various extensions, are provided by (Hunter, 2020)(Hunter, 2021). Previous studies

have successfully employed this approach(Tamimy et al., 2021). Notably, music preferences

have been found to exhibit a strong influence from socioeconomic factors, and these factors

are also interconnected with genetics through social reproduction. As such, conducting a mul-

tilevel analysis would enable the disentanglement of socioeconomic and genetic influences,

yielding a precise estimate of the proportion of variance exclusively attributed to genetics and

socioeconomic factors. For an overview of the hypothesis, please refer to Figure 2.B.
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5.3 Sociology of Music: A Cross-Cultural Study on

Musical Preferences

5.3.1 Introduction

Cognitive sciences typically do not address individual differences; however, I believe it is

essential not to disregard them. The main objective of this project is to identify and quantify

these differences to understand their origin using different measurement techniques in order

to also see the difference between self-reported preferences, objective measurements of pref-

erences through music listening. To achieve this, I decided to conduct a cognitive experiment

on music perception, followed by a semi-directed sociological interview and a questionnaire

to identify participants’ environment and social backgrounds. By conducting these in differ-

ent locations where populations are socially homogeneous, it will be possible to quantify and

compare inter-individual and inter-group differences and link them to sociological variables

identified during the interview/questionnaire. The chosen locations are Zalib Circolo Arci in

Rome and La REcyclerie in Paris. These two places are similar structures (socio-cultural cen-

ters) that attract a diverse audience, making sociological intervention feasible. This document

will outline the details of the study and planned analyses.

5.3.2 Locations

5.3.2.1 Zalib Circolo Arci - Rome - Italy

The Italian Arci network is a social mission association created after World War II, centered

around solidarity and anti-fascism values. Currently, this association counts 1,115,002 partic-

ipants spread across 4,867 local associations that foster social bonds through cultural, social,

and political events. With a membership fee of 8 euros per year to access all network associ-

ations, Arci stands out as a significant contributor to social cohesion in Italy. Zalib has been

part of this network since 2023. Originally centered around a bookstore and promoting read-

ing among people under 30, this venue is located in the Trastevere neighborhood of Rome. It

now serves as a hub for cultural dissemination, hosting book presentations, concerts, stand-up

comedy (in Italian or English), film screenings, and roundtable discussions. It also serves as

a workspace and meeting place, allowing people to work alone or in groups without the obli-

gation to consume. Thus, Zalib plays a role in cultural promotion and social bonding in the

Trastevere neighborhood and more broadly in the center of Rome.

I engaged with 50 individuals (with an average age of 23,12), including 27 males, 22 fe-
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males, and 1 non-binary person, out of which 15 were musicians. Among them, 10 lived in

neighborhoods close to Zalib (Monteverde, Pratti, Trastevere), 4 in central Rome, and 9 in

southern Rome. Only 4 lived in the eastern neighborhoods of Rome, which can be explained

by the fact that many Centro Sociale and Circolo Arci are located in East Rome. Zalib thus

emerges as a socio-cultural center for the central and western neighborhoods of Rome. Gener-

ally, the participants’ demographic data from Zalib reveal individuals with a very high level of

education (34 participants were fluent in at least 2 languages, 48 had graduated (average level

of education of 3.8) and 29 were students at the time of the interview). However, they show

relatively low incomes (median of 10k per year), likely due to their young age (median age of

24 years). Nevertheless, it can be assumed that they also possess significant economic assets,

as 30 of the participants have at least one parent in socio-professional category 3 (executives

and higher intellectual professions).

5.3.2.2 La REcyclerie - Paris - France

Multiple places were considered as location in Paris, such as La parole Errante (Montreuil),

La flèche d’or (Paris), La cité Fertile (Pantin), le 6B (Saint-Denis), le T-KAWA (Paris). It was very

difficult to find a place that had a similar social role as Zalib Circolo Arci. We finally decided

to go for La REcyclerie, situated in Paris in the 18th district, for its situation in inner Paris (as

Zalib in Rome), and its cultural, political, and ecological engagement.

The REcyclerie presents itself as a third place of exchange rooted in the values of sustainable

collaboration and empowerment. According to the founders, a third place is a space a space

offering a thousand and one activities and possibilities for a wide range of needs and audiences.

The REcyclerie may be a workspace, but it also has a cultural cultural, educational, leisure,

restoration, relaxation, repair, learning, experimentation, etc. The site is intended to be very

friendly and open.

However, La REcyclerie, as opposed to Zalib is a private structure that owns the space

through another company (Sinny & Ooko) and is not funded by the state, they also have private

partnerships such as Veolia and Black& Deker. A direct consequence of this status is that prices

are quite high for an alternative place (7,5€for the cheapest pint of beer). Even if La REcyclerie

does not require consumption to stay in the space, this makes the place frequented by higher

social classes in a popular neighborhood of Paris.

I engaged with 50 individuals (with an average age of 29,8), including 16 males, 32 fe-

males, and 2 non-binary people, out of which 20 were musicians. Among them, 18 lived in

the 18th district, 10 in inner Paris (including 5 in the center), and 17 in Ile de France, includ-

ing 12 in considered wealthy suburbs (e.g. Levallois-Perret, Saint Germain en Laye, Issy-les-

Moulineaux) and 5 from considered popular suburbs (Clignancourt, Noisy le grand, Choisy le
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roi). La REcyclerie thus emerges as a socio-cultural center hosting individuals from relatively

wealthy neighborhoods in a popular one. Generally, the participants’ demographic data reveal

individuals with a very high level of education (48 graduated with an average level of edu-

cation of 3.6 years and 23 were students at the time of the interview). However, they show

relatively low incomes (median of 17k per year) which is way lower than the average salary in

Paris (33k). Nevertheless, it can be assumed that they also possess significant economic assets,

as 25 of the participants have at least one parent in socio-professional category 3 (executives

and higher intellectual professions).

5.3.2.3 Comparison

It seems that both Zalib and La REcyclerie both host individuals with high levels of edu-

cation: 48/50 went to University for both places with an average level of education of 3.6

and 3.8. Both populations also had incomes way lower than the average of the city and par-

ents belonging to high socio-professional categories. Those demographics hint at a population

with low personal economic resources but probably medium/high economic resources from

their parents and high cultural assets both from home parenting and higher education. How-

ever, the first striking difference is the proportion of male/female, even, if the proportion of

non-binary individuals were comparable (2% and 4%) and similar to the one of the global

population (between 0.5% and 5% depending on studies). Zalib has a proportion very close

to parity (27M/22F), La REcyclerie exhibits a larger amount of females (16M/32F). Finally,

while Zalib is definitely an important place for the neighborhood of Trastevere and does not

host individuals from the eastern part of Rome (because other sociocultural places are situated

there), La REcyclerie seems to host people coming from center areas of Paris (5) and from out-

side Paris (17). In conclusion, the two places seem to host similar populations (high level of

education and low incomes) but because of the different situations about socio-cultural places

in Paris and Rome, the hosts come from different geographical places.

5.3.3 Experimental Procedure

The sociological intervention involved approaching isolated individuals (groups of up to

3) at Zalib and asking them to participate in a music perception psychology experiment. The

experiment’s introduction was pre-written and standardized, presenting a 30-minute music

psychology experience that would be compensated with 10 euros upon completion. All inter-

actions were conducted in Italian. If participants agreed to participate, they were asked to sign

a consent form outlining the procedure and their right to withdraw from the experience at any

time. Compensation was funded by the Laboratory of Perceptual Systems at the École Normale
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Supérieure, and the experiment adhered to the ethical guidelines of the CERES 2013-11 com-

mittee of the University of Paris Descartes. The intervention comprised three stages: cognitive

experiment, questionnaire, and semi-directed interview. The cognitive experiment involved 80

musical excerpts of 20 seconds each (described in the following section). Participants were re-

quired to rate their enjoyment of the excerpts on a -3 to 3 Likert scale and indicate the emotions

associated with the excerpts using emojis on a sad/happy scale (see appendix for images). They

could also indicate if they were familiar with an excerpt, allowing its exclusion from analysis.

This experiment precisely measures musical preferences and emotional responses during music

listening, which are the two most important factors in music perception. This data enables us to

compare music perception precisely across different social groups. The program for conducting

the experiment was developed by me using Python with the Psychopy platform. Subsequently,

participants were asked to complete an online questionnaire, starting with demographic infor-

mation (age, gender, place of residence, etc.), followed by specific questions about their music

listening conditions (location, duration, context, etc.). Finally, they answered a questionnaire

about their musical preferences, rating 19 music genres from -3 to +3. This step allows us to

compare our results with previous sociological studies and to compare directly (through music

listening) and indirectly (through questionnaires without music listening) measured musical

preferences. Lastly, participants were given the option to contribute an additional 15 minutes

for a sociological interview about their relationship with music. This interview was conducted

with 10 participants and could take various forms based on the participants’ responses. How-

ever, it typically began with general questions about why they enjoyed listening to music, in

which situations, and whether they listened to different music based on situations and people

they were with. The interview could then delve into their connection between music and mem-

ory (reminiscence, Proust’s Madeleine effect), their connection between sociability and music,

or their relationship between individuality and music.

5.3.4 Stimuli

I compiled 80 musical excerpts from various sources, including every noise, YouTube, Sound-

Cloud, and Spotify. The approach was to include a diverse range of musical grammar (struc-

tures modulating timbre, melody, harmony, and rhythm) to capture subtle differences between

participants. To achieve this, I aimed to select pieces from different countries, musical genres,

and eras (see appendix for the list), with special attention to choosing examples that partici-

pants were unlikely to be familiar with (there is a significant perceptual bias when one is already

familiar with a piece). After initial analyses, very few stimuli were recognized by participants.

Finally, an algorithm was developed to randomly choose 20-second passages, which were used

in the experiment.
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5.3.5 Analyses for How to Measure Musical Preferences: A Com-

parative Study

We proposed in section 5.1 that there are three forms of musical preferences: by the genre

they self-report they prefer, by the genre they actually listen to (through Spotify data), and by

the music they actually prefer when probed with music they don’t know. We hypothesize that

those three proxies over musical preferences measure a mix of different mechanisms: socio-

cultural affiliation and individual music cognition (mainly thought of through familiarity). We

propose to study the differences between the two measures made through questionnaires of

preferred musical genres and self-reported preferences while listening to musical excerpts.

All our 80 stimuli will be categorized into the 17 genres of the questionnaire by a panel of

professionals (some working at Radio France, the French public radio). All the analyses will

be conducted on high-dimensional data (all the genres/stimuli). Therefore, we will use multi-

dimensional generalizations of the correlation and explained variance equations. Basically,

they consist of averaging the results across the dimensions (there is no obvious way of weighing

them). In the case of the correlation, we concatenate all dimensions into a single vector and run

the usual Pearson’s correlation. For the explained variance, when the variables are numeric, we

just use the generalized correlation formula and take the square of it (as in the unidimensional

case). In the case of categorical variables, the multi-dimensional variance is computed as the

sum of the variance over all the dimensions. To compute the explained variance, we compute

the ratio of the between-groups sum squares (
∑

d

∑

i
(x ..d− x i..)2, for each group i and dimension

d) and the total sum squares (
∑

d

∑

i, j
(x ...−x i jd)2, for each group i, group sample j and dimension

d).

The first analysis will compare the raw preference correlations between genres as measured

by means of the questionnaire and by means of the audio stimuli. Big differences in this di-

rect comparison will suggest that the two measures capture different components (Fig.5.3.A).

We check whether this difference allows to explain the individual differences by computing the

distance between each participant by means of the two methods (questionnaire and audio stim-

uli). We therefore end up with 2 distance vectors for which we can compute the correlation.

This correlation tells how much the structure of the individual differences resemble between

the two methods. To assess whether one method contains more information than the other, we

conduct a regression analysis and compute how much of the variance of the two methods can

be explained by the data of the other method (Fig.5.3.B). We hypothesize that a significantly

higher amount of the variance of the questionnaire can be explained by the audio stimuli than

inversely, meaning that audio stimuli result in richer and finer-grained measures of musical

preferences. We can now ask the question of whether the variance of the two measures can
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be explained by different socio-cultural variables, meaning that in addition to being different,

they are affected by different sociological mechanisms. To this end, we compute the relative

explained variance for several socio-cultural variables and for the two methods. The relative

explained variable is computed using multi-variable linear regression from all the socio-cultural

variables to the preferences measures and from all the variables but the one of interest in or-

der to compute the relative contribution of this variable. Then, in order to compare all the

variables even if they have different numerical substrates, we run a null model where we shuf-

fle the variable of interest and look at the improvement of the model with respect to the null

models (Fig.5.3.D). We hypothesize that the questionnaire measures will be more correlated

to socially affiliating variables such as gender and socio-professional categories than cultural

variables such as the city of living and level of education. Finally, for methodological interest

for future studies, we run a PCA-like analysis where we sort the audio stimuli by their exclu-

sive contribution to the total variance of the 80 stimuli. Then, we compute the amount of

variance explained by the first n stimuli, the function is, by definition, monotonic and should

reach 0 when all 80 stimuli are included(Fig.5.3.C). To compute the exclusive contribution of

each stimulus, we run a PCA and weigh the explained variance of each principal component

with the absolute value of the coefficient for each variable. We then sum the resulting values

over all the principal components and sort the contribution of each variable. Then, we run a

multi-variable linear model from the stimuli 1:n to the entire set of 80 stimuli. The explained

variance is computed using the previously defined high-dimensional Pearson’s correlation, and

the square of it (r2) gives the explained variance. Before our experiment is composed of a large

set of various musical stimuli, this method will allow to replicate this experiment with similar

populations using a lot less stimuli, and, therefore, significantly shorten the duration of the

experiment which is crucial in sociologically valid situations.

5.3.6 Analyses for What Sociocultural Variables Explain Musical

Preferences and Emotions

Here and for the rest of this section we will use the socio-professional categories as an

example, however, we will run those analyses for different variables. Also, because we asked

the participants to self-report the valence of the stimuli on a sad/happy scale, we have a proxy

over the emotional responses of the participants, which, in addition to the preference, allows

to study the perception of the participants.

The first analysis (Fig.5.4.A) will divide the entire set of participants into groups according

to the given variable of interest (here socio-professional categories as an example) and will

show the raw preferences for the different musical genres (by means of both measures previ-
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Figure 5.3. Planned analyzes about the difference between the two measures of musical
preferences. A Cross-correlations between genre preferences measured by the questionnaire
or by self-reported preferences on audio stimuli. B Variance explained by the regression from
the stimuli-measured preferences to the questionnaire-measured preferences, and inversely. C
We defined the optimal number of audio stimuli in order to explain 95% of the total variance.
D We compare the relative variance explained by socio-cultural and demographic variables for
the two preference measures.

ously compared) as well as the omnivoreness. The omnivoreness is computed as the flatness

of the musical preferences function, therefore, we use the Shannon entropy over the sum-

normalized preferences by genres. This is a good way to replicate the findings by (Coulangeon,

2005) that the French population is divided by omnivoreness over socio-professional categories

and that higher social classes also listen to more culturally-valued genres such as classical mu-

sic and opera. We also hope to discover other trends, that will be, hopefully, different between

Rome and Paris, over other variables. We want to assess whether some variables are more ex-

plicative of the preferences than others and if the relative contribution of the variables is similar

between musical preferences and emotional responses. To this end, we conduct a similar anal-

ysis to in Fig.5.3.D but add the emotional responses and will interpret it in relationship to the

other analyzes. In addition to this analysis, we propose in Fig.5.4.B a graphical representation
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of the individual differences for each variable. The scatter plot represents all the participants

plotted on the two first principal components of the data. The color and size do the points will

show variance over the given variable of interest. We can, therefore, assess whether a given

variable correlates to the data in a linear or non-linear way. We can also visualize distances

between participants in the perceptual space in relationship to the socio-cultural variables.

This study will give a new and innovative view on the sociology of music in the two places in

Paris and Rome through qualitative and quantitative data of music perception and fine-grained

and top-level statistical analyzes.
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Figure 5.4. Planned analyses about the comparison of the variables explaining musical
perception. A Comparison of the raw genre preferences and omnivorness by socio-professional
categories.B 1-principal component map of socio-professional categories (given by the size of
the points). C Comparison of the exclusive and relative explained variance between variables
for both the musical preferences and the emotional responses.
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6 DISCUSSION AND CONCLUSIONS
In this thesis, we covered different aspects of music perception, putting ourselves in the

framework of the predictive coding theory (Clark, 2013; K. J. Friston et al., 2010) that claims

that the brain emits sensory predictions about upcoming events based on the statistics of the

external environment.

The literature was already rich in examples of brain responses to unfamiliar musical events

(Koelsch, 2009; Koelsch & Mulder, 2002; Koelsch et al., 2000; Leino et al., 2007; Loui et al.,

2005; Saarinen et al., 1992; Steinbeis et al., 2006), even using continuous measures of expecta-

tion through statistical models of music (Di Liberto, Pelofi, Bianco, et al., 2020; Omigie, Pearce,

et al., 2019). We first explored this question in more detail. Specifically, we isolated those pre-

dictions by using a statistical model of music to predict the moments of natural silences in

ecologically valid music. We showed that those moments induced statistically significant brain

responses of an inverse polarity with respect to listening responses and that those responses

were also correlated with the expectation of having a note in those moments (the more likely

the note the more negative the response). This finding is strong and new evidence for a predic-

tive mechanism during music perception that tries to ultimately cancel the sensory responses.

Such a mechanism has been shown to have a role in facilitating perception, for instance, by

aiding in restoring missing or noisy parts of a stimulus (Leonard et al., 2016; McClelland &

Rumelhart, 1988) or biasing ambiguous perception (Brainard & Hurlbert, 2015; Pressnitzer

et al., 2018). We also showed that similar responses are found during musical imagery, the

action of mentally hearing music without any physical stimulation. Those responses already

demonstrated to spatially overlap with listening responses through fMRI studies (Bastepe-Gray

et al., 2020; Bunzeck et al., 2005; Griffiths, 1999; A. R. Halpern, 2001; A. R. Halpern & Zatorre,

1999; A. R. Halpern et al., 2004; Herholz et al., 2012; Hubbard, 2013; Kraemer et al., 2005;

Lima et al., 2015; Yoo et al., 2001; Zatorre & Halpern, 2005; Zatorre et al., 1996; Zhang et

al., 2017). However, the field was missing clear electrophysiological characterization of those

responses. We showed that their dynamics were very related to those of during perception as

they were of an almost perfect inverted polarity. We showed that it was possible to use im-

agery response to reconstruct listening responses, and inversely, very in line with the previous

literature.

This predictive coding framework offers a versatile theoretical base for computational mod-

eling as statistical models generate predictions after being updated with training data. Such

models have been extensively used by the community for behavior(J. J. Bharucha & Stoeckig,

1986; Bigand & Pineau, 1997; Bigand et al., 2001; Margulis, 2003; Margulis & Levine, 2006;

Marmel et al., 2008; 2010; Omigie, Pearce, & Stewart, 2012; Tillmann et al., 2006), elec-

trophysiology (Di Liberto, Pelofi, Bianco, et al., 2020; A. R. Halpern et al., 2017; Marion
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et al., 2021; Omigie, Pearce, et al., 2019; Omigie et al., 2013a; M. T. Pearce et al., 2010;

Quiroga-Martinez, C. Hansen, et al., 2020; Quiroga-Martinez, Hansen, et al., 2020) and even

fMRI(Cheung et al., 2019). Since those models are useful in music cognition, we developed

and presented several updated and enhanced versions. A first set was developed for musical

expectations based on the IDyOM architecture(M. T. Pearce, 2005) and has proven to outper-

form the previous implementation of IDyOM on certain measures, especially the theoretical

modeling of musical culture, which makes them appropriate models for future cross-cultural

studies on music cognition. The second set of models pinpoints cross-sensory predictions and

is based on the literature on cross-modal predictions between the motor and auditory cortex

(Brodsky et al., 2008; Y. Ding et al., 2019; Grisoni et al., 2019; Mado Proverbio et al., 2014;

Tian & Poeppel, 2010; 2012; 2013; Ventura et al., 2009; Whitford et al., 2017; Zatorre et al.,

1996). This literature proposes that efference copies are sent between those two areas.

An explanation for such a system is learning motor controls. Indeed, speaking requires

building a mapping from an auditory representation to a motor representation. However, the

feedback given from the vocal tract back to the ears is a physical path that does not allow

it to backpropagate the errors naturally. Building an alternate neural (motor/auditory) path-

way allows the system to do so. We call this architecture the Mirror Network and hypothesize

that it could solve problems that would require computing the inverse of a complex and non-

differentiable physical component. Such mapping has also been proposed in music production

and perception(Martin et al., 2017). We presented here two implementations of the Mirror

Network: one for speech and one for music. In addition to showing that simulations of those

models allow for learning non-differentiable modules, we also show that they have strong en-

gineering applications as they allow to solve complex engineering problems very efficiently

(without labeled data for instance).

Finally, there has remained much uncertainty as to how musical expectations are formed.

Studies have shown that participants from different cultures form different predictions, consis-

tent with statistical models trained on the music of their own culture(C. Krumhansl et al., 1999).

It was also known that passive exposure to structured pitch sequences induced predictions that

were consistent with the statistical structures of those sequences(Loui et al., 2010). However,

it was not clear what neural mechanisms were underpinning this adaptation, the lasting of

this effect, and its relationship to musical enjoyment. We showed in this thesis that the same

components of the EEG responses that are modulated by musical expectations were affected

by the passive exposure to unfamiliar music and that those changes in the amplitude were

consistent with statistical models trained on the exposed music. The accompanied increase

in self-reported pleasure allowed us to also bridge the gap between recent findings showing

that the relationship between expectation and musical pleasure follows an inverted U shape

(also known as the Wundt effect)(Berlyne, 1971; Chmiel & Schubert, 2017; Huron, 2006) that
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shows that musical pleasure has its optimum for an intermediate-level of surprise(Cheung et

al., 2019; Gold, Pearce, et al., 2019). Our finding that an increase in familiarity pushes toward

the optimum of the curve is therefore consistent with this previous literature.

Those three chapters kept together draw a very clear line between predictions, culture, and

enjoyment: i) an internal statistical model of musical structures always sends predictions about

upcoming events, ii) we like the music that is coherent with those predictions but also not too

predictable. And finally, iii) being exposed to new music updates our model and makes our

musical preferences evolve. This theory seems to corroborate nicely previous findings in music

cognition and the sociology of musical preferences. In addition, it gives a clear evolutionary

argument for cortical specification for music in humans. Indeed, what the Wundt effect pro-

poses is that we like music that challenges our internal model without injecting too much noise

into it. This is a computational argument for inclusion and stability: we are willing to include

the music of others in our own culture as long as it does not break the stability of the system.

As this mechanism is implemented in every listener, the collective behavior is to update models

by including the music of all individuals making the global preferences evolve toward a more

representative type of music. Since humans socialize and experience rituals around music, we

can see this neural mechanism as an evolutionary mechanism for social cohesion.

In this thesis, we also discussed the limitations of this theory and proposed two new studies

aiming at a better overview of this phenomenon. The first study is a genetic study based on

twin modeling that could shed light on the respective effects of the environment and genetics on

individual musical preferences. The second study proposed to examine cross-cultural sociology

data to see the effects of sociocultural affiliation on musical preferences and discuss what could

be acquired by other means than mere passive exposure to music.

That said, more work is needed to have a better and sounder overview of this phenomenon.

First, most of the studies are conducted on western populations making it hard to conclude

whether the observed mechanisms are due to social constructs or innate physiological pro-

cesses. For instance, there is currently no cross-cultural validation of the Wundt effect(Chmiel

& Schubert, 2017). The only study conducted on non-Western populations showed a linear

(and not inverted U-shaped) relationship between familiarity and preferences(Chmiel & Schu-

bert, 2017; Teo et al., 2008). As Western populations have recently transitioned from a Cultural

Legitimacy paradigm (each social class consumes its exclusive music, and higher social classes

consume exclusively more complex genres of music) to an omnivorous paradigm (higher so-

cial classes are not distinguished by specific genres but by the variety of music they like), it is

thus possible that the Wundt effect would also be a social construct that the Western ideology

deeply imbues in our brains by the argument that intermediate levels of complexity result in

superior aesthetic experiences. Ethical cross-cultural studies and experiments in newborns will

help answer this question and give sound arguments about the universality of certain cognitive
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mechanisms.

We have proposed here that musical preferences could be shaped not only by the statistics

we are exposed to but also by the way we value aesthetic experiences. I, therefore, think that it

is also important to include sociology in music cognition as some cognitive phenomena can be

entirely shaped by the environment. In addition to giving very good insights into the balance

of power and the role of social values in the aesthetic experience, it could also suggest new

methods that could be seen as micro cross-cultural studies. Populations within a city, or between

different non-remote geographic areas are, indeed, very heterogeneous, and many sociological

variables such as gender, socio-economics, and education level are known to explain a lot of

the variance of musical preferences. Finally, the interplay of music cognition and culture roots

itself at the core of the nature/nurture debate. I also think that a collaboration with genetic and

developmental studies, in addition to ethical cross-cultural studies, could shed light on those

questions.
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Artist Song Name Genre Year of Production Country of Production
Fuyumi Sakamoto Muhou Ichidai Iri Traditional 2014 Japan
Abdou Gambetta Allah Ghaleb Rai 2023 Algeria
Adela Jens Nuits chanson 2023 France
Adriana Franco Luz da Nossa Afeição Fado Antigo 2013 Portugal
Airelle Besson & Nelson Veras Pouki Pouki Jazz 2014 France
Al Ruzafa Samai Hijaz Kurdi Trad Arabo-Andalus 2007 Spain
Antent Magnolia hardwave 2022 Russia
Antonella Colaianni mezzo (Pergolesi) Stabat Mater baroque 1730 Italy
Barrut L'èrba dagram Trad Occitana 2018 France
Black Bear Creek Round Dance Powwow (trad indignous) 2008 Canada
Bloco Não Serve Mestre Não Serve Mestre Eu Sou bloco 2018 Brasil
Willie Bobo Evil Ways Willie Bobo afro-cuban percussion 2003 Cuba
CAROLE PELÉ Courir french trap 2022 France
Cao Jianguo Imperial court music in Tang dynasty (Part I, Prelude of Dance Music of the Imperial Palace)Traditional 2007 China
Carlina Lara Be Pemontonay (She Looks Like a Tree with Flowers) musica indigena latinoamericana2001 Venezuela
Chico Mann Dilo Como Yo  (Te Están Llamando) latin afrobeat 2012 USA
Chiddy Bang Wonderful Feeling indie pop rap 2023 USA
Clyde Davenport & W.L. Gregory Cumberland Gap appalachian folk 2021 USA
Constantin Moscovici Sen Gelmez Oldun moldovan population 2017 Azerbaijan
Dan Kye Actually indie jazz 2020 England
David Darling Lugu Lugu KanIbi bow population 2021 USA
David Herrero The Present, the Future (Extended Mix) latin tech house 2020 Spain
Diamante Negro Club Caribe spanish noise population 2020 Spain
Post Nebbia Oltre la soglia contemporary jazz 2022 Italy
Dr. Dipali Bhatt, Foram Maheta Yamunaji Ni Stuti gujarati garba 2001 England
Prospero Cauciello Duetto No. 2 for 2 Mandolins in G Minor I. Andante baroque classical music 2014 italy
Floyd Lee When You Break A Young Girls Heart blues 2001 USA
Gacha Empega Adieu paure carnavas musica occitana 1998 France
George Braith BOOP BOP BING BASH soul jazz 2002 USA
Gesleir Tout va bien french indie pop 2020 France
Grentperez Absence Of You bedroom r&b 2022 Australia
Grupo Sotz'il Chinimital musica indigena latinoamericana2017 Guatemala
Gyudmed Tantric Monastery Taking Refuge in Three Gems; Invitation of the Green Tara; Purification of the Buddha and...tibetan mantra 2002 Nepal
Hands of Elohim Never Alone christian rock 2017 USA
Isabella Zirilli Buio freddo pop 2022 Italy
Joe Armon-Jones Midnite Oil (Sparkzzz) indie jazz 2017 England
Joe Perrino Giovanottello musica sarda 2014 Italy
Kapela Harnasie Idzie Dysc goralski 2012 Poland
Kelyan Muller, DJ High Con Cuidao latin viral pop 2020 France
LEXO Tagounite french rap 2020 France
La Fabi Viva la Tierra nuevo flamenco 2018 Spain
Lavender Fields Sleepy Tiger shamanic 2020 USA
Leslie Medina Particulière french pop 2023 France
Banis Tubaru Bai population flamenco 2010 Spain
Masanka Sankayi + Kasai Allstars Wa Muluendu musique traditionnelle congolaise2005 Congo
Maulidi And Musical Party Mume Ni Moshi Wa Koko taarab 2006 Kenya
Mauresca Per la montanha musica occitana 2011 France
Nhii Feather feat. Pippermint (Iorie & Madmotormiquel Remix) ethnotronica 2020 USA
Nicolas Fraissinet La fée clopette french folk pop 2008 France
Niuri Te sule & Pinzani Pizzica la TarantaBallataranta tarantella 2012 Italy
Braja Bungkam indonesian experimental 2019 Indonesia
Oh, Weatherly Here Tonight pop punk 2018 USA
Olga Tira Inima Mamei moldovan pop 2018 Moldova
Oskar Easterfield Funkadelic nordic house 2018 Norvegia
Pibes Ran Me escapé de la granja cumbia chilena 2017 Chili
Pura Fé Mohomoneh indigenous folk 2015 USA
Rovere astronauta italian indie pop 2022 Italy
Seyoum Gèbrèyès Muziqa muziqa funk ethiopan soul 2004 Ethiopy
Shoming Bouboul Akwel Tambola comptine africaine 2020 France
Sirrus Frill Ride gamecore 2012 England
Suamenlejjona Penkist sata finnish metal 2019 Finland
Surf Curse Freaks surf punk 2021 USA
Sverdlovsk Philharmonic (Sergei Prokofiev) Piano Concerto No. 2 in G Minor, Op. 16 II. Scherzo. Vivaceclassical orchestra 1990 England
The Nazgûl Shelobs Lair ambient soundscapes 1975 Spain
Tony Chasseur Souri ba mwen zouk 2015 France
Trio Maravilla Plena De San Anton bomba y plena 1954 Colombia
Tristan Talking in Technicolour psytrance 2014 England
Twelve Thousand Days Thistles deep neofolk 2012 England
VILDÁ Vildaluodda finnish folk 2019 Finland
Vetcho Lolas Shamakuana zouglou 2004 Germany
Jillian Dawn Watered Down folk rock 2022 USA
Xacobe Martínez Antelo QuintetoPaí galician jazz 2006 Spain
Kim Sawol Someone korean indie 2018 Korea
arthrn malaimé indie electronic pop 2015 France
centomilacarie Strappami la pelle a morsi emo trap italiana 2022 Italy
В'Ячеслав Кукоба Гадом буду не забуду ukrainian folk pop 2005 Ukrain

אנסמבל יעלה ״יונת רחוקים״ israeli folk 2020 Israel
 2 اغنية تخاصم2E تصالح2E - فيلم البس عشان خارج34 Oبو RE3 غانم محمود الليVسم XYحسن الرداد اي egyptian traditional 2016 Egypt

太合音樂 Taihe Music 窒息樂隊 Suffocated【黎明之下】HD 高清官方完整版 MVmetal 2019 Taiwan
山田ギャル神宮 MyStory japan pop 2021 Japan


