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Abstract

The neural mechanisms underlying music perception remain poorly understood, this project
aims to investigate statistical models of musical surprise and their roles in music perception.
In this study, we re-implemented a variant of IDyOM in Python that has been shown more
accurate than the original Lisp implementation using both cross-validated likelihood and predic-
tion of EEG recordings of 20 participants passively listening to Bach music. Thinking that the
brain behaves similarly as a statistical model of music is part of the statistical learning theory
which has been already investigated in the literature. Showing the physiological consistency of
such models validates the first hypothesis of this theory (probabilistic prediction hypothesis).
The other fundamental hypothesis (statistical learning hypothesis) has been investigated in this
study by highlighting enculturation changes after passive exposure to unfamiliar music. The ac-
curacy of EEG decoding of surprise seems not to be related to musical training, we hypothesized
that surprise decoding accuracy is driven by audiation capability. We used a pilot experiment
to show that mTRF can be used to decode envelope from imagined music and be used as a
measure audiation capability. Finally, we presented a new framework for comparing statistical
models of surprise that presents several advantages over the currently used methods (negative
log-likelihood, behavioral experiments) and can be generalized to any kind of musical modeling,
including generative models.
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1 Introduction

Music is, first of all, a social and psychological phenomenon, a shared meaning of sounds. The famous musicologist
Jean-Jacques Nattiez [1] takes from Jean Molino the theory of tripartition to explain that the meaning of a musical
piece can be given either by the genesis process of the piece, what he calls poëtic semiosis, or by the reception
process of the listener, what he calls esthésic semiosis. According to him, the actual piece in its physical conditions
(the score, or even a recording) is empty of sense and does not carry any meaning; only those processes do. So,
to understand a piece, one should focus on one of these processes, and the main goal of the musicologist is to
understand all of them to, finally, understand the piece.

According to this theory, working only on the actual piece can only lead to descriptive work. This is why,
while computational musicology and music generation take more care of the poëtic aspects, this project aims to
investigate the esthésic semiosis by studying its physiological correlates: how our brain is processing music to make
us feel it?

Recent studies from Marcus Pearce [2] suggested that models based on variable-order Markov chains can reliably
mimic the brain processing of melodic expectations, such models are used to predict a surprise signal over time
(inversely related to the likelihood) computed note after note from the past. A recent study from Giovanni Di
Liberto [3] put forward that the human brain generates a similar signal, implying that stronger cortical responses
are generated for more surprising notes.

Because of our clear understanding of their mechanisms, statistical models of surprise give us a great opportunity
to test precise hypotheses on the way we perceive music. However, statistical models of surprise have been mostly
used by the community of neurosciences of music on indirect physiological indices based on both subjective judgments
and behavioral indices [4] [5] [2]. Until now, most of the published papers using direct electrical recordings of the
human brain used Event-Related Potential (ERP) from ecologically valid, but non-rhythmic stimuli using only
pitches of the same duration [6] [7]. The only study using real music stimuli to correlate neural recordings with
surprise signals is under review [3].

Nonetheless, these already-made physiological confirmations of these models already corroborated a first hy-
pothesis: our brain is predicting the next note based on some statistical model while listening to music and one is
’surprised’ if the actual next note is far from its expectation. But what about the other notes in the future, do we
only have predictions on the next note, or also on the following ones? Do our predictions of notes far in the future
affect our expectation of the next one? Music can contain structures at multiple time-scales that may allow for
predictions of notes on much longer intervals.

In this thesis, we first aim to implement a statistical model of surprise based on Markov chains in Python.
This was previously done with the Lisp programming language [2]. However, the poor accessibility of the Lisp
language and the small documentation of the project made it hard to reach and modify, what justify a new
implementation. Our goal is to produce a version that is more targeted to the comparison of the computational model
with neurophysiological data and to provide us with more modification flexibility in order to embbed physiological
hypotheses in the model. In the first project of this report, we investigate whether and how longer-term expectations
affect the cortical responses to music. We propose a new model for melodic expectation based on variable-order
Markov chains investigating this hypothesis. Then, we use Electroencephalography (EEG) data and the Multivariate
Temporal Response Function (mTRF) technique [8] to assess the physiological validity of our two models and
compare them to the current Lisp implementation. The presented framework rests on the statistical learning
theory [5] who asks several questions related, for example, to the underlying cognitive mechanisms of melodic
expectation and enculturation mechanisms. This why, after explaining these ideas in the thesis, we will present
some extended pilot projects investigating these questions using our new models.

2 Background

The neural mechanisms underlying music perception remain poorly understood. The literature provides us with two
main hypotheses building the theoretical basis of studies using statistical model of surprise: the statistical learning
hypothesis and the probabilistic prediction hypothesis [5]. On the one hand, the statistical learning hypothesis says
that music enculturation is a process based on an inner model of musical grammar learned over implicit statistical
learning. This model can catch structural regularities present in a given musical style the person was exposed to,
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this model can behave differently with respect to time scales (this idea will be decisive in the design of the model):

short time scale such as a single piece of music (modeled by the short-term model);

long time scale such as an entire lifetime of music listening (modeled by the long-term model).

On the other hand, according to the probabilistic prediction hypothesis, enculturated listeners, in order to
organize mental representation of music and to generate culturally appropriate responses, apply their previously
trained inner model to generate probabilistic predictions that allow grammatical processing of the piece. In the
models we are interested in, the probabilistic predictions are defined as an estimate of the likelihood of notes modeled
by an ideal brain of a typical listener. This typical listener is supposed to have only listened to a specific musical
corpus (the training set).

Using this paradigm gives the possibility to simulate brain responses to stimuli as the listener was enculturated
with a specific kind of music, allowing a new kind of experiments related, for instance, to the effect of musical
exposure, implicit learning and cultural distances. This paradigm is so general that is can also apply to different
domains such as language [9] allowing, for example, experiments on fundamental differences that language and
music can show: the effect of repetition may be one of them.

2.1 IDyOM Model
Information Dynamics Of Music (IDyOM) is a statistical model of musical surprise created by Marcus Pearce and
published in 2005 in his thesis [2]. It is capable of predicting surprise at the note level, after a training based
on variable-order Markov chains. It has provided useful insights to and has been largely used by the community
of psychology and neurosciences of music (cited by 248 studies) making it the most used statistical model of
surprise. In this section we will present different studies related to the physiological consistency of the model,
giving opportunities to a wide range of cognitive studies.

2.2 Surprisal is a Good Tracker for Enculturation
Demorest and Morrison capture the effects of statistical learning in their cultural distance hypothesis: “the degree
to which music of any two cultures differ in the statistical patterns of pitch and rhythm will predict how well a
person from one of the cultures can process the music of the other.” [10]. In order to catch cultural differences
between listener, and therefore to be a good model for enculturation, IDyOM should show good ability to predict
cultural distances. This can be verified by predicting how well a person from on culture can process music from
other culture. This is what Marcus Pearce [5] showed to prove that IDyOM is capable of simulating enculturation
effects through statistical learning.

He trained two instances of IDyOM on two different datasets: one on a corpus of Western folk songs, supposed
to model a typical Western listener and one on a corpus of Chinese folk songs, supposed to model a typical Chinese
listener. He used both models to predict average surprise (prediction accuracy) both within and between cultures.
The Western corpus consists of 769 German folk songs from the Essen Folk Song Collection (data sets fink and
erk). The Chinese corpus consists of 858 Chinese folk songs from the Essen Folk Song Collection (data sets han
and natmin).

A low average surprise means that the data was well predicted by the model, a high average surprise means
that the data was badly predicted by the model. We can so have an idea of the accuracy of the model depending
on the data. If IDyOM is a good model for enculturation, the Western model will be good for Western music but
not for Chinese music, and the Chinese model will be good for Chinese music and not for Western music. Plus, it
would be used to classify an unknown piece of music within these two classes.
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Figure 1: Simulating cultural distance between Western and Chinese listeners. (A) average surprise for all data
(Western melodies in blue and Chinese melodies in red), (B) cultural distance over a neutral axis. The dash lines
show the equality line (x = y) meaning that pieces on that line are equally predicted by the two models and cannot
be distinguished by the model. (adapted from [5])

A classification framework based on this technique has been shown to correctly classify 98.52% of the pieces.
This shows that IDyOM may be a good model for enculturation (at least for these Western and Chinese folk
melodies) and give hope for more complex experiments using the enculturation modeling property of IDyOM.

2.3 Validation by Musicological Analysis
Different techniques have been used to show the physiological consistency of statistical models of surprise. One of
them [5] consists in showing the coherence between a musicological analysis of pitch structure and pitch surprisal
over time. The author took an analysis of Schubert’s Octet for Strings and Winds made by Learnard Meyer in
Explaining Music (1973) [11] and showed that when they found comments related to the notion of surprisal, the
same idea was corroborated by IDyOM. Here is an excerpt:

«When the theme returns in bars 21– 22, Meyer writes that “The triadic implications of the motive are
satisfactorily realized ... But instead of the probable G, A follows as part of the dominant of D minor
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(V/II).” IDyOM reflects this analysis, estimating a lower probability for the A5 that actually follows
than for the G5 that is, again, anticipated (0.013 versus 0.186). [5](p.4) »

There is a number of examples of adequation of IDyOM analyses and the ones from Meyer. Showing that
IDyOM, only trained on a corpora of Western music, can generate analyses close to the ones made 20 years ago by
a famous musicologist support the idea that IDyOM can be a realiable model of musical enculturation. However,
this study is purely qualitative and music analysis is higly subjective. In order to have a better evidence that
IDyOM may behave in a similar way than the perception of a Western enculturated person, it would be interesting
to replicate this experiment with several subjects.

2.4 Validation by Behavioral Expectedness
This is what Marcu Pearce did by using already collected data from a behavioral experiment designed by Manzara
et al. [4] In this experiment, authors asked 15 participants to place bets on the subsequent pitch given an excerpt
of Bach choral. Participants continued to bet until the correct note was bet (20 pitches to choose from), then,
they moved to the actual next note of the original melody. Incorrect prediction resulted in the loss of the bet b,
while a correct prediction was rewarded by incrementing the capital sum in proportion to the amount of the bet:
S
n

= 20 · b · S
n�1

The measure of surprise (here called information content) is derived by taking:

IC = log2(20)� log2(S), where S is the average gain for a given note.

The author trained IDyOM only with pitches in order to match with the experimental design. Then, the surprise
signals over notes were compared between IDyOM and the data of the experiment. Fig. 2 shows an example on
BWV 379 [2].

Figure 2: Comparison of surprise signals (information content) between IDyOM simulation and behavioral data
from Manzara et al. on BWV 379 Bach choral. (adapted from [2])

IDyOM was able to account for approximately 63% of the variance in the mean uncertainty estimates reported
by Manzara et al. This result suggests that human listeners evaluate likelihood of notes in a similar way as IDyOM
does. This study was the first (published in Pearce thesis in 2005) to assess an eventual physiological consistency
of such models of music.

2.5 Validation by EEG Prediction
Very few studies showed evidence of physiological consistency of IDyOM using recording of neural activity. The
first entire study using neural data to prove cortical correlates of a similar process as IDyOM is still under review [3]
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(but available on bioArxiv). Di Liberto et al. collected 20 participants in Electroencephalography (EEG) and 1
participant in Electrocorticography (ECoG) with electrodes placed in the temporal cortex. Participants were asked
to listen to 10 excerpts of Bach music.

IDyOM was trained on a corpus of Western music (excluding the stimuli) in order to simulate the ideal brain of
a typical Western participant. This model was used to generate a surprise signal over time for the 10 stimuli, mTRF
method was used to predict the EEG data from both the envelope of the stimuli (computed by Hilbert transform)
and the surprise signal. The addition of the surprise signal improves, within participants, the prediction accuracy
of the EEG data (fig.3).

Figure 3: Prediction of unseen EEG data from the envelope of the stimuli (A) and the surprise signal (M) using
mTRF method. (left) The enhancement emerged at the individual subject level, the gray bars indicate the im-
provement. (right) The effect of melodic expectations (correlation

AM

� correlation
A

) emerged bilaterally on the
same scalp areas that showed also envelope tracking. (adapted from [3])

An Event-Related Potential (ERP) analysis has also been made to show that the 20% less surprising notes and
the 20% most surprising notes (according to IDyOM prediction) showed significantly different ERPs (fig. 4).
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Figure 4: Event-related potentials (ERP) analysis. Shaded areas indicate the 95% confidence interval (across
subjects). The right panel shows the total ERP power for the latencies from 0 to 200 ms (* p < 0.001, permutation
test). Error-bars indicate the SEM across subjects. (adapted from [3])

This study shows that EEG and ECoG data reflect melodic expectation, and more specifically, that the brain is
predicting the next note while listening to music and generate proportionally more powerful brain responses when
an expectation is broken. That demonstrates clear evidence of the physiological consistency of the IDyOM model
allowing us to imagine more complex EEG studies.

2.6 Electrophysiological Correlates of Melodic Processing in Congenital Amusia
In this study [6] Diana Omigie and colleagues used IDyOM to investigate whether people suffering from congenital
amusia1 process musical expectation in a similar way as others. A known consequence of amusia is bad detection of
gross musical violations, however, there has been increasing evidence that amusics show preserved musical ability
using implicit methods [13]. Omigie et al. recorded electrophysiological data for both amusics and control par-
ticipants listening to real melodies. They used IDyOM trained on Western music to model the ideal brain of the
participants and generate an ideal surprise signal over time for the stimuli. ERP analysis was used to compare the
notes of high surprise and the notes of low surprise to investigate the extent to which the amusic brain differs from
that of controls.

The data revealed a novel effect that was highly comparable in both groups: notes with high IC reliably elicited
a delayed P2 component relative to notes with low IC, suggesting that amusic individuals, like controls, found these
notes more difficult to evaluate, giving rise to proper processing of pitch expectation in amusics.

3 Method

3.1 IDyOM
IDyOM is a statistical tool used to model melodic expectations at the note level, it is based on variable-order
Markov chains and composed of two parts: a long-term model (LTM) that is pre-trained on a musical corpus, and
a short-term model (STM) which is trained on the current piece and is used to catch repeating structures during a
listening.

3.1.1 Long-Term Model

A Markov chain describes a memorylessness process which means that, for 8i,X
i

sequential random variables,
1Amusia is a musical disorder that appears mainly as a defect in processing pitch but also encompasses musical memory and

recognition affecting 4% of the general population [12].
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P (X
k

= x|X
k�1, Xk�2, ..., X0) = P (X

k

= x|X
k�1)

We define S as the set of states and a function P : S2 ! [0, 1] for the probabilities of jumping from state to
state. Such a model can be easily shown as a n ⇤ n matrix or a graph G = (V,E) where V (vertexes) are the states
of the Markovian process, and E (edges) indicate the transitions probabilities:

Our melodic musical grammar is defined on the alphabet ⌃ that contains all the musical notes with P : S2 ! [0, 1]
the probability to observe a note knowing the previous one. So one can easily construct the graph G = (V,E) with
V = ⌃ and E = P such as G is describing our grammar. This model is known as a first-order Markov Chain.

The fig. 6 shows a simple example of a graph representation of a first-order Markov chain for musical purpose.
It is carrying the statistical model representing the beginning of the melody of Au Clair de la Lune (fig. 5).

Figure 5: Beginning of Au Clair de la Lune.

C

D E

2/4

1/4

1/4

1/4

2/4

1/4

1

Figure 6: An example of Markov Chain in a graph representation for the melody of Au Clair de la Lune. Idiomatic
musical gestures are caught, for example, E should always resolve to D and C is the more occurent note.

Because of the highly structured nature of music, it seems not a reasonable assumption to say that the current
note depends only on the previous note, musical sentences are constructed over sometimes large numbers of notes
and repetitions, for example, show long-term dependencies. By using n-grams, we can still use the Markov model
and include long-term dependencies.

An n-gram is an element of the Cartesian product of the original set of states (in our case ⌃), 2-gram 2 ⌃⇥⌃,
3-gram 2 ⌃⇥ ⌃⇥ ⌃, ..., and so,

n-gram 2
nQ

k=1
⌃

By using n-grams as elements of S the set of states of our Markov Chain, we have the transition probability !
between n-long words, 8!

k

, 8n,

P (! = !
k

|!
k�1)

We can thus get the probability for a given note by,

P (Z = z
k

|z
k�1, ..., zk�n

) =
X

{!i}|!i[0]=zk

P (! = !
i

|z
k�1zk�2...zk�n

)
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Variable-order Markov chains have the property to use n-grams of different length and to dynamically adapt
the utility of each order. Having a model that can embed n-long temporal dependencies allow us to reasonably use
it to model melodic sentences.

As suggested by physiological studies on music perception [5], notes are processed as two independent features:
time onset and pitch. Two models are trained on these features, and the final probability is given by their joint
likelihood:

P (Z = z) = P (Pitch = z
pitch

) · P (Length = z
length

)

Z still follows a probability distribution if Pitch and Length are:

P
z2⌃

P (Z = z) =
npP
i=1

nlP
j=1

P (Pitch = p
i

) · P (Length = l
i

)

P
z2⌃

P (Z = z) =
npP
i=1

P (Pitch = p
i

) ·
nlP
i=1

P (Length = l
i

)
P
z2⌃

P (Z = z) = 1

3.1.2 Training

Transition probabilities are learned over a corpus of musical data. For this purpose, we compute the frequencies
over all random variables and use them as probabilities2.

P (Z = z
k

|z
k�1, ..., zk�n

) = #zk�n...zk�1zk

#zk�n...zk�1

3.1.3 Merging Information from Different Orders

Once trained, the model provides us with up to n probability distributions (one by order) for a given context.
IDyOM uses the following definition of the probability of an event Z depending on the context C:

P (Z = z|C) = ↵(z|C) + �(z|C) · P (Z = z|C[1,:])
3

The functions ↵() and �() are approximated using the Prediction by Partial Matching (PPM) algorithm [2](see
[14] for the original method). Note that P (Z = z|C[1,:]) refers to the Markov chain of order n � 1. By iterating
recursively, we visit all orders and assign a weight to every probability distribution. The following method is used:

�(z|C) =
t(C)P

z

02⌃
#C · z0 + t(C)

, and,

↵(z|C) =
#C · zP

z

02⌃
#C · z0 + t(C)

Where t(z|C) denotes the total number of symbol of ⌃ that have occurred with non-zero frequency in context C.
This method allows to acount for the diversity of a distribution: a distribution that only saw a couple of n-grams
will be less represented than a distribution which saw all the alphabet.

In order to have a numerical definition of surprise for a given note c and a given context C, we use information
content, usually used in information theory to account for the unpredictability of an event:

H(Z = z|C) = �log2(P (Z = z|C))
2We use #! as the number of occurrences of the word ! in the corpus.
3We note C[x,:] the context C truncated from the x first elements.
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3.1.4 Short-Term Model

The short-term model embeds exactly the same computational model than the long-term model, but not trained on
a corpus. The short term model is trained during the trial of a given piece, therefore, it only takes into account the
very local grammar of the given piece and responds to its structural variations. The distributions of the short-term
model and the long-term model are merged using arithmetic mean weighted by the entropies of the models, b is an
additional parameters allowing to sharp or smooth the final distribution4:

P (Z = z) =
E�b

1 · P1(Z = z) + E�b

2 · P2(Z = z))

E�b

1 + E�b

2

Entropy is given by Shannon Entropy as follow:

E = �
P
z2⌃

P (Z = z) · log2(P (Z = z))

3.2 Evaluation
In order to evaluate implementations and compare models, we need to have an objective measure, we choose cross-
validation (k-fold) by mean of likelihood averaged over notes. We call this measure our theoretical measure. We
divide the data set D into k different subsets D

i

. For each subset D
i

, we train on D \D
i

and evaluate on D
i

by
the likelihood L, the score is the average over all subsets. The likelihood L for a given subset is the average of
likelihoods over all notes:

L =
P

n2notes

P (n|Mi)
|notes|

With P (n|M
i

), the probability returned by the trained model used for the given evaluation.
Using average likelihood over unseen data is based on the idea that a good model should generate a better

average likelihood than a worth one. Indeed, notes that appeared should have in mean (because of the law of large
numbers) a greater probability than the ones that did not appear; as the probability distribution cannot reach 1
for every event, a more accurate distribution should generate larger likelihoods. Machine Learning studies often use
negative log-likelihood to evaluate their models [16], which is basically the same but in the log domain.

3.3 EEG Signal
EEG allows to record non-invasively the brain electrical potentials that reach the surface of the human scalp along
with noise from scalp muscles and cerebral motor signals. In the Biosemi 2 system we use, the electrical signal
is recorded over 64 electrodes placed on the scalp, the 64 signals are merged to form a matrix of recordings of
electrodes over time and represent what we call the EEG signal. There exist other solutions to record brain activity,
as fMRI which is based on blood flow and has a way better spatial definition than EEG, but the low temporal
resolution of those methods is an issue when studying responses to fast stimuli such as music.

3.4 mTRF
In order to find a given signal into EEG data, an effective method consists in applying a linear regression between
a given signal and the EEG one and then compute a correlation between the predicted signal and the target [8].
To this end, we make the assumption that the brain response r(n, k) recorded by an electrode k at index n can be
approximated as a linear transformation of the stimulus s(n):

r̂(n, k) =
MP

m=0
s(n) · w

k

(n�m)

Where M = |w
k

|, N = |s(n)| and M  N

In order to have a definition of the response of the brain, we introduce a residual response "(n, k) not predicted
by the system such as:

4In our implementation we use b = 1.
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r(n, k) = r̂(n, k) + "(n, k)

We can so write in this form:

8n, r(n, k) = (s ⇤ w
k

)(n) + "(n, k)

By matrix rewriting,

R
k

= Sw
k

+ "
k

With S, Toeplitz matrix of s(t):

S =

2

6664

s(1) S(N) · · · s(1�N)
s(2) S(1) · · · s(2�N)

...
. . . . . .

...
s(N) S(N � 1) · · · s(1)

3

7775

And so, stacking all w
k

in W ,

R = SW + "

The optimization problem is to find the vector W that minimizes this residual response ", we so define the
following optimization problem as an Ordinary Least Squares method over the vector W ,

min
W

KP
k=1

NP
n=1

[r(n, k)� r̂(n, k)]2

We remark that the minimized error equals the squared residual error,

[r(n, k)� r̂(n, k)]2 = "(n, k)2

Thus gives us the following closed formula5,

Ŵ
k

= (ST

k

S
k

)�1ST

k

R
k

This method is used to predict the EEG signal from a given signal representing the stimuli. The idea is to
learn the vector W that applies a linear transformation from s(t) to r(t, k). If this transformation allows to predict
r(t, k) with high accuracy it means that the signal s(t) is carrying a lot of information about r(t, k) and so that it
is actually being processed in the brain, the process is explained in fig. 7. If the correlation is low, then, one cannot
say anything, as the low correlation may be due to the non-linear relation between s(t) and r(t, k) or because s(t)
is not carrying relevant information.

Figure 7: We predict the signal of the EEG from a given representation of the stimuli in order to check its relevance.
(adapted from [8])

5We note that inverting a matrix can be a hard computational task, so we may want to use another technique like gradient descent
in some case.
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In order to check hypotheses on the relevance of given musical representations or mechanisms of music processing,
we can use different representations of the stimuli as s(t). Recent work showed that envelope and its first derivative
allow a correct prediction of the EEG signal [17]. Moreover, studies also suggested that way more information can
be present in neural signal [18] and that surprisal can be found in EEG recordings. [3].

3.5 Data

3.5.1 Music Dataset

We used two different datasets which we call:

Training set containing all Bach chorals as midi files made from .kern files written by hands. They are supposed
to be rhythmically clean.

Evaluation set containing different Bach concerti:
Bach violin pieces from sonatas and partitas:

• partita num 1 in B minor, allemande
• partita num 2 in D minor, allemande
• partita num 2 in D minor, gigue
• partita num 3 in E major, loure
• partita num 3 in E major, gavotte

Partita for flute in A minor by Bach.

These midi files were gleaned on the internet and were probably recorded with a midi keyboard and are likely
to be rythmically imprecise. These files were the stimuli for a previous EEG study whose we used the data.

All surprise signals related to the training set were made using cross-validation. The surprise signals for the
evaluation test were generated by training the algorithms with the training set only.

3.5.2 EEG

We used already collected EEG data of people listening to the evaluation test. These data have been recorded for
the purpose of a previous study [17].

Twenty healthy subjects (10 male, aged between 23 and 42, M = 29) participated in the EEG experiment. Ten
of them were highly trained musicians with a degree in music and at least ten years of experience, while the other
participants had no musical background. Each subject reported no history of hearing impairment or neurological
disorder, provided written informed consent, and was paid for their participation. The study was undertaken
in accordance with the Declaration of Helsinki and was approved by the CERES committee of Paris Descartes
University (CERES 2013-11). The experiment was carried out in a single session for each participant. EEG data
were recorded from 64 electrode positions, digitized at 512 Hz using a BioSemi Active Two system. Audio stimuli
were presented at a sampling rate of 44,100 Hz using Sennheiser HD650 headphones and Presentation software
(http://www.neurobs.com). Testing was carried out at Ecole Normale Supérieure, in a dark room, and subjects
were instructed to maintain visual fixation on a crosshair centered on the screen and to minimize motor activities
while music was presented. EEG signals were digitally filtered between 1 and 8 Hz using a Butterworth zero-phase
filter (low- and high-pass filters both with order 2 and implemented with the function filtfilt), and down-sampled
to 64 Hz. Results were also reproduced with high-pass filters down to 0.1 Hz and low-pass filters up to 30 Hz. EEG
channels with a variance exceeding three times that of the surrounding ones were replaced by an estimate calculated
using spherical spline interpolation. All channels were then re-referenced to the average of the two mastoid channels
with the goal of maximizing the EEG responses to the auditory stimuli.
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4 New Models

4.1 IDyOMpy
IDyOMpy is a variant of IDyOM implemented in Python including the following changes.

4.1.1 Rhythms Quantization

Data gleaned on the internet are often recorded by hand on a midi keyboard. Therefore, rhythm is imprecise, and
lead to a Gaussian-like noise added to note duration, for example: [9, 11, 8, 9, 13] in place of [10, 10, 10, 10]. As our
algorithm is based on a discrete alphabet, this kind of, apparently small, errors can be catastrophic. Therefore, we
chose to over-quantize the vector of note durations in order to avoid that, this technique can be seen as rounding
the values to the closest valid value. The quantization parameter can be tuned to any value (possibility to plot
cross-validated accuracy over quantization parameter). Fig. 8 shows this plot for the evaluation set.

Figure 8: Average likelihood plotted over quantization value for the evaluation set. We used different value for
the quantization parameter (avoid rythm imprecision) and computed the likelihood averaged over notes and over
pieces.

4.1.2 Data Augmentation

In order to be able to generalize to any keys, we augment the data. For that, we transpose all pitch to 6 semitones
up and 5 semitones down in order to reach all 12 tones by minimizing extreme pitches.

4.1.3 Merging Algorithm (smoothing)

Instead of using the PPM algorithm to merge the different orders of the Markov chains, we chose to merge the
probability distributions using an arithmetic mean weighted by the entropies of the distributions.

Once trained, the model provides us with up to n probability distributions for a given context, we merge them
using arithmetic mean weighted by the entropy of the given generated distribution. We note E

i

the entropy of the
probability distribution given by the context C

i

corresponding to the i-order model.

P (Z = z|C) =

nP
i=1

P (Z = z|C
i

) · E�1
i

nP
i=1

E�1
i
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Entropy is given by Shannon Entropy as follow:

E
i

= �
P

z2Si

P (Z = z|C
i

)log2(P (Z = z|C
i

))

This method allows better cross-validated predictions over the training set.

4.1.4 Entropy Computation

In our implementation we use entropy to merge the different Markov chains and to merge the the short-term and
long-term models. A naive implementation would compute the entropies of the Markov chains in order to get the
entropy of the long-term or short-term models. However, because we also used the entropy to merge the Markov
chains we already know the entropies of the distributions from wich the long-term and short-term models are drawn.

P (Z = z|C) =

nP
i=1

P (Z = z|C
i

) · E�1
i

nP
i=1

E�1
i

Therefore, it was of interest to find a way to compute the entropy of P only from E
i

. We showed that using the
mean of entropies weighted by themself is a good approximation and allow to drastically reduce the computation
time:

E =
nP
i

E
i

· E�1
i

/
nP
i

E�1
i

4.2 JUMP
The large majority of models for music generation and probability distribution estimation relies on predictions of the
next note [19]. But, is the brain working this way? Our project aims to investigate if a model based on predictions
of notes further than the next one is more physiologically plausible than the current methods. Our model is still
based on variable-order Markov chains in order to stay in a controlled theoretical frame. The main idea is that
we sometimes have a quite bad expectation (high entropy of the model) for the next note, but for some reasons
(repetitions, structure, ...) we may have a very good prediction for one of the following notes. We can think at a
musical structure where there is sentence repetition, each sentence ends with a cadence (sub-dominant, dominant,
tonic), in this case, the expectation of the end of the sentence can help us predict the next note. We call depth k
the size of the jump between the current note and the long-term predicted one.

Figure 9: The red line corresponds to the prediction path IDyOM uses, the blue line corresponds to the path JUMP
uses.

For a given depth k, and order n,

P (X
t

= z|X
t�1, · · ·, Xt�n

) =
P
x2⌃

P (X
t+k

= x|X
t�1, · · ·Xt�n

) · P (X
t

= z|X
t+k

= x)

The idea is to construct a new IDyOM module having several models with different depth and combine them
using arithmetic mean weighted by their entropy.

We so have, for order n and maximum depth K,
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P (X
t

= z|X
t�1, · · ·, Xt�n

) =
P

kK

E
k

·
P
x2⌃

P (X
t+k

= x|X
t�1, · · ·Xt�n

) · P (X
t

= z|X
t+k

= x)

With E
k

, the entropy of the model of depth k.
We hypothesised that the resulting JUMP model would better capture long-term dependencies than IDyOM,

thus, allowing us to test whether the low-frequency cortical responses to music reflect such dependencies. We
therefore expect JUMP predictions to be more strongly linked to the EEG signal.

5 Results

This section will show the results of the comparison of three models:

IDyOM is the original implementation of IDyOM in Lisp6 (cf. section 3.1).

IDyOMpy is our Python implementation of IDyOM including some small improvements7 (cf. section 4.1).

JUMP is a variant of IDyOMpy using conditional probabilities of future events.7(cf. section 4.2).

In order to compare these models we will use two measures:

Theoretical measure using average likelihood over unseen data based on the idea that a good model should
generate a better average likelihood than a worth one.

Physiological measure using the correlation of the predicted EEG. This measure is based on the assumption that
a good model should be able to better predict the EEG data as the surprise signal would be more correlated
to the brain responses. Because of signal-over-noise ratio, prediction correlations can vary between subjects,
this is what we will look at the improvment of the models with respect to the prediction correlation of the
envelope only. In case of improvement we will plot the correlations within subjects.

5.1 Theoretical Measure (likelihood)
We computed surprise signals of the training data using cross-validation (k-fold) with k = 5. For the evaluation,
we trained our model on the training set and computed the surprise signals on the evaluation set.

5.1.1 Training Set (cross-validated)

We use our theoretical measure only on the training data (Bach chorals).
6https://code.soundsoftware.ac.uk/projects/idyom-project
7https://guimarion.github.io/IDyOM
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Figure 10: Models comparison on the training set using the theoretical measure (⇤ : p < 10�22). (left) Comparison
of average likelihood over pieces for the three models using pitch and time onset features. Error bars represent
95% confidence intervals. IDyOMpy was used with maximal order 20 and JUMP with maximal depth 10, both
used quantization of 24 notes per beat as the training set was clean and k-fold cross-validation (k = 5). (right)
Comparison of IDyOM and IDyOMpy within pieces, blue dots resulted in a greater likelihood for IDyOMpy than
IDyOM (Lisp), orange dots resulted in a greater likelihood for IDyOM than IDyOMpy, finally the bigger the
dots, the greater the difference between the models. Average note duration in expressed in sample, where 1 beat
corresponds to 24 samples.

We can see a increasing trend (p� value = 10�22 using Wilcoxon test between paired correlations for all pieces)
between IDyOM and IDyOMpy and a decreasing trend between IDyOMpy and JUMP (p� value = 10�32). When
we look at the piece level, we can see that the likelihood increasing trend between IDyOM and IDyOMpy is for 93%
of the pieces and that the uniform looking distribution of the likelihood suggests that the algorithm is not overfitting
to an obvious sub-space of the data. Between IDyOM and JUMP, the results within pieces are exacerbated and
every piece shows a better likelihood for IDyOMpy than JUMP (we don’t show the plot).

5.1.2 Evaluation Set (EEG stimuli)

In order to be able to properly interpret the data from the EEG experiment, we use our theoretical measure on the
evaluation test (EEG stimuli).
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Figure 11: Models comparison on evaluation set using theoretical measure (⇤ : p < 0.04). (down) Comparison of
the models using average likelihood on the test dataset. (left) Comparison of IDyOM and IDyOMpy piece by piece
on the test dataset. Average note duration in expressed in samples, where 1 beat corresponds to 24 samples. (right)
Comparison of IDyOMpy and JUMP piece by piece on the test dataset.

We can observe a similar increasing trend between IDyOM and IDyOMpy (p � value = 0.036 using Wilcoxon
test between paired correlations for all pieces) and a nice distribution over pieces. However, the opposite trend
showed in the previous plot between shows IDyOMpy and JUMP (p� value = 0.024), which is also quite uniformly
distributed over pieces but results in a different ditribution as between IDyOM and IDyOMpy.

5.2 Physiological Measure (eeg)
We compare our models using our physiological measure on EEG data.
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Figure 12: Models comparison using physiological measure (EEG prediction). EEG was predicted (leave-one-out
cross-validation) using mTRF from the envelope of the stimuli, the first derivative and the envelope and the surprise
signal generated by each model, we use the correlation between the predicted EEG and the true EEG as what we
call physiological measure. (left) Comparison of IDyOMpy and IDyOM piece by piece. (right) Comparison of
IDyOMpy and JUMP piece by piece. Average note duration is expressed in sample, where 1 beat corresponds to
24 samples. (center) Comparison of the topoplot (spatial correlation). mTRF is used to predict all electrodes,
the average prediction correlation within electrodes is plotted over the scalp. (down) Comparison of IDyOM and
IDyOMpy by participants (p = 10�3). We plotted the correlations from IDyOMpy subtracted by the correlation
from IDyOM (r

idyompy

�r
idyom

). The dash line is the equality line where IDyOM and IDyOMpy get same prediction
correlations. The error bars correspond to the standard error computed across pieces. Note that subject S20 (only
subject not showing improvement from IDyOMpy) did not show any improvement by adding surprise signal from
IDyOM to the envelope.

Between IDyOM and IDyOMpy, we observe a similar increasing trend (stats between subjects below) as shown
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with the ohter measures and still a uniform distribution over pieces. Note that the distribution over pieces is quite
similar as the one showed using the theoretical measure on the same pices.

Between IDyOMpy and JUMP, we observe a similar trend as in the first analysis (theoretical measure on the
training set) but the opposite trend as shown using the theoretical measure on evaluation test (same data). Also,
note that the distribution over pieces is drastically different from the one using the theoretical measure.

When we look at the comparison between IDyOM and IDyOMpy within-subjects, we observe a clear trend
(p = 10�3 using Wilcoxon test between paired correlations for all subjects) showing an improvement for every
subject but one. It seems that there are no correlations between the quality of the improvement and the musical
training of the participants.

Finally, the topoplots show that the spatial correlations are the same for all models, which is, by the way, the
same as the envelope and its first derivative (cf. section 2.4).

6 Discussion

We hypothesized that we could replicate results from [3] in order to prove the consistency of the statistical learning
theory and, more importantly, that our new implementation of IDyOM may be a better model for studies related
to the statistical learning theory of music. Likewise, we also hypothesized that a model based on the prediction of
notes further than the subsequent one would allow better long-term dependencies and a better prediction of the
EEG signal suggesting similar cortical mechanisms.

First, showing that theoretically valid statistical models of surprise can reliably predict EEG data lighted on the
probabilistic prediction hypothesis [5] saying that, in order to structure the musical discourse, the listener uses an
inner probabilist model of musical expectation. However, the probabilistic prediction hypothesis is only one of the
two bases of the statistical learning theory, the other one being the statistical learning hypothesis. This hypothesis
says that this inner model of musical expectation is learned throughout a lifetime of music listening, this mechanism is
called enculturation. This means that every listener is supposed to be enculturated differently depending on his/her
own experience of music and that people who listened to music from drastically different cultures are supposed to
be more differently enculturated than people from the same musical world. This hypothesis (statistical learning
hypothesis) has never been proved physiologically [5]. One possible continuation of this study would be to design an
experiment to highlight this mechanism in human cortical recordings. As an example, showing that enculturation
of people change after intensive passive listening of unfamiliar music would be of interest.

We also showed that our implementation generalizes better in terms of cross-validated likelihood but also that
the surprisal from our implementation allows better predictions of the EEG signal for 19 participants over 20. This
interesting result can be a step for studies of melodic expectation as this model can enable us to look at more
subtle expectation change, and therefore looking at, for example, surprise decoding accuracy over time to look for
mechanisms as attention. Also, having a more accurate model can allow us to look at the subtle changes in people
enculturation after passive listening of unfamiliar music. Finally, this model can be of interest in the community of
music psychology and neurosciences for its usability and modularity.

In order to show the accuracy differences between our implementation and the original one, we presented a
framework for musical statistical model benchmarking. Indeed, statistical models of music are usually evaluated
using negative log likelihood [16] [2] or through behavioral experiments, often processed online [20] [21]. This
framework allows having an objective measure based on cortical correlates of music listening. The literature abounds
with statistical models of music: from Markov chains [21] [2] and Bayesian models [22] [23] to Recurrent Neural
Network-based ones [19] [20] [16]. Using our framework to evaluate these models would allow us to understand
deeper differences (surprisal decoding over time for example) they can have. One question would be to know whether
this evaluation framework is sensibly close to the usual behavioral tests supposed to catch the convincibility of the
models. Showing that our framework can say a lot on the perceived accuracy of models can lead to fast improvement
in musical modeling as we don’t have to collect new data for each model.

Finally, (Di Liberto 2019) [3] showed that surprise decoding accuracy differences in musicians and non-musicians
were not clear. We showed a similar result in the improvement of our implementation over the original one. This
allows us to hypothesize that surprise decoding accuracy is not driven by the property musician/non-musician but
maybe by another one. Precisely, Edwin Gordon, American music learning theorist, proposed in 1975 [24] the
term audiation to designate the understanding and internal realization of music, in other words, the sensation of
hearing or feeling an individual sound when it is not physically present. He suggests that "audiation is to music
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what thought is to language". Gordon points out that audiation is a potential element of musical ability, arguing
that to demonstrate musical ability, audiation is necessary. He introduced several tests of musical ability based on
audiation. In his theory, Edwin Gordon defines several stages of audiation whose highest is:

« Stage 6: Anticipating and predicting tonal patterns and rhythm processes [25]. »

Meaning that audiation abilities are necessary for musical prediction and anticipation, which is exactly what we
try to catch in surprise tracking. We can, therefore, hypothesize that the adequacy of the surprise signal produced
by our statistical model and the listener EEG recording would depend on this ability in the listener. This question
opens a wide range of studies of music and the brain: first, it would interesting to see whether audiation is a musical
metaphor and if there is any physiological meaning of it. For example, it would of interest to see whether or not
it is possible to decode features of stimuli from EEG of people imagining the stimuli. This would be physiological
evidence of the idea of audiation. Then, showing that audiation capabilities (Edwin Gordon defined behavioral
tests for audiation capabilities) are related to the accuracy of surprise decoding can highlight the stage 6 of Gordon
theory and open doors to underlying mechanisms of melodic expectation.

Unfortunately, our hypothesis on predictions of notes further than the subsequent one (JUMP) cannot be
answered because JUMP is not a better predictor of the EEG signal. This can be explained by the parameters (i.e.,
depth of the predictions and depth merging algorithm) and the implementation. More attention can be driven into
the implementation and can eventually lead to positive results. Also, other methods can be used to answer this
question. As an example, we can hide notes to the listener while recording EEG so the listener has to predict the
following notes with a depth k corresponding to the length of the blank. Our model allows getting the true surprise
value for these notes. Regressing the surprise signal after deleting the hidden notes can allow us to investigate the
question of the jumps in the predictions, and to see if musically trained listeners can predict at bigger depth than
others.

This study showed a technical improvement in the domain of statistical learning theory of music and neuro-
sciences and psychology of music. This new implementation will be released as a tool for the community. Besides,
this study asks several questions (audiation, enculturation, models comparison) that have been partially investigated
in pilot studies. The next section will show preliminary results of these studies.

7 Future Projects

7.1 Decoding Imagined Music

7.1.1 Scientific Question

As shown in this study (cf. section 6), audiation can be an explanation of differences in surprise decoding accuracy.
The first related question is to understand whether audiation corresponds to a physiological mechanisms: is imaging
music generates auditory cortical responses?

EEG data have been collected as two sets: one participant in Paris where three conditions are investigated:
playing, silent playing and imagining using familiar melodies for the participant (professional theremin player) and
two participants in Montreal investigating two conditions: listening and imagining using Bach choral melodies.

We use envelope tracking and surprise signal from IDyOMpy to predict the EEG data, we hypothesize that
these signals are present in the imagined EEG.
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7.1.2 Using Envelope (first dataset)
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Figure 13: Comparison of the prediction accuracy from the envelope of the metronome (heard sound) and the
stimulus (played or imagined sound) with lags window of [-50, 350] ms.

We observe that adding the information of the envelope of the real stimuli (not the metronome) helps to predict
the EEG signal, meaning that there is correlates of the stimuli in the EEG data. Shuffling the pieces kills the
improvement.

7.1.3 Using CCA between conditions (first dataset)

EEG is available for 3 conditions: playing, silent playing, imaging. CCA was applied to each pair of conditions to
try to identify brain responses common across conditions.

PLAYING
SILENT

PLAYING
SILENT

PLAYING
IMAGINING

- Hear

- Motor

- (Audiation)

- Motor

- (Audiation) - (Audiation)

Figure 14: Conditions of the first experiment, we hypothesized that audiation is present in all the conditions,
especially in silent playing and imaging.

Data from each condition were centered (mean removed), normalized and submitted to PCA, and the PC series
was truncated to 10 PCs to limit overfitting. The following plot shows the correlation between CCs for each CC
pair (no cross-validation), as a function of overall shift between data of conditions being compared:
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Figure 15: Correlations between conditions from CCA using a time shift.

There seems to be a strong correlation between 1&2 for several CC pairs (compare the height of the peak at
zero shift to background). There seems to be a much weaker correlation between 1&3 for one CC, and none (or
very weak) between 2&3.

We took the first CCA analysis to transform silent playing condition and imagined condition into a maximally
correlated space. Then, we tried to predict the embedded imagined EEG from the envelope of the stimuli using
TRF with lags of [-50, 350].
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Figure 16: Correlation of imagined and silent playing conditions without and with stimuli shuffling.

We can see that the weak correlation we found is completely due to chance. We then conclude that CCA is not
a good analysis for the project and does not allow us to replicate results we found using TRF from the envelope
to raw EEG. We think that doing CCA between these conditions result in a signal which is not indicative of the
envelope of the imagined sound, the metronome beat is, for instance, much more correlated between these two
conditions such that the PCA destroys the audiation correlates.
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7.1.4 Using Surprise (second dataset)

We tried to replicate the result found with the first dataset using mTRF to predict imagined EEG from the envelope
of the stimuli. For that, we used the envelope of the beat (metronome), the envelope of the stimuli, and the surprise
signal from IDyOMpy as regressors for the EEG prediction. As a baseline, we constructed a null-model by training
mTRF on shuffled data, of which the prediction should be interpreted as being merely by chance.

Figure 17: Encoding prediction accuracy. Violin plots show smoothed histograms of EEG prediction correlation
for each Bach choral. Gray dots mark individual trials (i.e., leave-one-trial-out cross-validation fold) and colored
thick horizontal lines mark the mean of each distribution. Black horizontal lines mark the mean (solid lines) and
95% confidence intervals (dashed lines) of the null-models (chance level). We computed Wilcoxon test using the
mean over null-models (10) correlations and the real correlations paired by trials. In imaging condition: p = 0.0086
(subject 1) and p = 0.0250 (subject 2). In listening: p = 0.2249 (subject 1) and p = 0.0086 (subject 2).

We can see that the decoding of the imagination condition is significant for both subjects, which means that we
found cortical correlates of the stimuli. However, the listening condition is not significant for subject 1, which can
be explained by the hardness to stay focus in passive conditions.

7.1.5 Conclusion

This project gives good results for EEG decoding of imagined music using mTRF. However, we need to replicate
the experiment with more subjects. Also, it would be very interesting to have a wide range of subjects in order
to find an eventual correlation between results of the audiation test from Gordon and the accuracy of the EEG
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decoding of imagined music. Finally, it will be necessary to look at the spatial correlations as well as the weights
of the mTRF in order to compare them with the listening condition.

7.2 Implicit Learning of Novel Musical Genre through Exposure

7.2.1 Scientific Question

In this thesis, we highlighted the consistency of the probabilistic prediction hypothesis (cf. section 6). However, the
probabilistic prediction hypothesis is only one of the two bases of the statistical learning theory, the other one being
the statistical learning hypothesis. This hypothesis says that this inner model of musical expectation is learned
throughout music listening. This enculturation mechanism can, therefore, be tracked by enculturation modeling.
We showed (cf. section 2.2) that IDyOM is a good model for enculturation. We hypothesize that, after relatively
intensive listening of unfamiliar music, our inner enculturation model will change. This project aims to investigate
whether enculturation changes can be tracked using our statistical model of musical surprise (IDyOMpy).

7.2.2 Experiment

We use a 2h dataset of Chinese music (dataset shanxi from Essen Folk Song Collection) rendered using Guzheng
Kontakt library from WavesFactory. We splitted the dataset in three: training (1h30), test1 (15min) and test2
(15min). The experiment consists in three steps:

Pre-Exposure: participants are asked to listen the test1 set while we record EEG.

Exposure: participants are asked to listen to the whole training set (1h30) every day for two days.

Post-Exposure: participants are asked to listen to test1 and test2 while we record the EEG.

We recorded 3 participants, 2 naive listeners (supposed to be mildly exposed to this music) and 1 for who this
music was familiar.

7.2.3 Analysis

We hypothesized that before the exposure the inner model of surprise is closer to a common Western model of
surprise than to a proper ‘Chinese‘ model of surprise. And that after exposure, the inner model of the listener
should be closer to the Chinese model due to the statistical learning hypothesis. We so simulate these two models
by training IDyOMpy with the training set (Chinese model) and with western music (Western model). A recent
study [5] showed that IDyOM model behaves strictly differently for these two datasets, and therefore make a
comparison meaningful.

Therefore, we expect the Western model to be more predictive before exposure and the Chinese model to be
more predictive after exposure, in other words, to see the relative utility of the Chinese model to be increased after
exposure.

7.2.4 Results

We track the evolution of the improvement of the EEG prediction by the surprise generated by the Chinese model.
The plot shows:

correlationChineseSurprise/correlationWesternSurprise
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Figure 18: Comparison of the utility of the Chinese model over the Western model after and before exposure.

We observe a decreasing trend of the utility of the Chinese model after exposure for the data of test1, these
data were the same as before exposure. We also observe an increasing trend after exposure for the data of test2
with respect to data of test1 before exposure. The same pattern is observed for both naive subjects.

7.2.5 Discussion

Data from test1 was already known by the subjects from the first experiment (before exposure), therefore, we can
interpret the increasing utility of the Western model in the second listening (after exposure) as a marker of the
remembering of the pieces. As the pieces were already known through the Western model, we can hypothesize that
in the second listening, it is more likely to process the same piece through the same model. However, it is also likely
that the inner Chinese model and the inner Western model of the listeners are more separated after exposure, and
so the utility of what is specific to the new Chinese model (after exposure) decreases in the second listening.

On the other hand, the trend before exposure (test1) and after exposure (test2) is very clear and fit exactly to
our expectations. New musical contents are not associated with any specific model and will, therefore, be likely to
be processed through the Chinese model newly trained during exposure. This model being more accurate, it results
in better prediction of the EEG data.

Even if results are hard to interpret, the same trend is shown for both naive listeners and comfort us in our
interpretation that this experiment may be evidence of the statistical learning hypothesis. However, more subjects
need to be collected to be confident in the data and, therefore, in the interpretation.
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8 Conclusions and Future Directions

In this project, we showed that IDyOM is a good model for musical enculturation but that this model was too
difficult to modify and access. Therefore, we implemented a new version in Python showing better results for both
theoretical (average likelihood comparison) and physiological (EEG prediction correlation) measures on Bach chorals
and concerti. This new implementation will be of interest of the community of neurosciences and psychology of
music, and therefore will be released freely on the internet. We also showed that the modularity of our new
implementation allows implementing physiological hypotheses into variants of our model. Using our framework to
assess the validity of such models can lead to evidence of similar cortical mechanisms. Replicating such clear evidence
of the consistency of statistical models of surprise validates the probabilistic prediction hypothesis. However, this
hypothesis is only one of the two bases of the statistical learning theory. The other hypothesis (statistical learning
hypothesis) has been investigated in an additional pilot project showing great preliminary results of enculturation
change after passive exposure to unfamiliar music.

The new framework we used to compare models of music surprise can be used as a benchmark for statistical
models of surprise, replacing the usually used negative log-likelihood. Also, this framework can be generalized to all
statistical models of music using the notion of likelihood and allows several advantages over the current benchmark
methods such as: (1) it is a physiological and objective measure of statistical models, (2) it does not need additional
data when a model is changed, (3) it does not require any part of the training data to evaluate. Therefore, this
framework will also be shared with the community and is already used by researchers at Maryland University to
evaluate a new model of surprise [22].

Finally, we hypothesized that the accuracy of EEG decoding of surprise is not directly driven by musical training
but by audiation capability. We showed for the first time, in a pilot project, clear evidence that audiation is not
a musical metaphor but has a cortical meaning as it is possible to decode envelope from EEG of imagined music.
It is planned to keep this project going in order to show whether audiation capabilities are correlated to surprise
decoding accuracy.

This research will be continued in a Ph.D. at Laboratoire des Systèmes Perceptifs supervised by Prof. Shihab
Shamma, the first project will be to reproduce the imagined music decoding with a reasonable amount of subjects
(20) and a very first step will be to see if using tactile metronome instead of regular metronome may improve the
decoding.

A part of the pilot experiments for future projects was made at the 2019 Telluride Neuromorphic Cognition
Engineering Workshop. I would like to thank all the participants and faculty of the workshop for their very warm
welcome and their help and a special thanks to the people who helped me for the projects that I used in this report,
by projects:

Decoding imagined music: Giovanni Di Liberto (ENS), Seung-Goo Kim (Duke), Aditya G. Nair (UW), Lauren
Fink (UC, Davis), Alain de Cheveigné (ENS), Shihab Shamma (ENS), Lisa Margulis (Princeton).

Implicit learning trough passive exposure: Pablo Ripollés (NYU), Claire Pelofi (NYU), Sandeep Kothinti
(JHU), Shihab Shamma (ENS), Mounya Elhilali (JHU)

Physiological measure of statistical models of music: Sandeep Kothinti (J.Hopkins), Shihab Shamma (ENS),
Mounya Elhilali (J.Hopkins)

I would also like to thank Daniel Pressnitzer for introducing me to the Laboratoire des Systèmes Perceptifs,
Yves Boubenec for introducing to my current and future supervisor, Shihab Shamma and all the personnel of the
LSP and IRCAM.

Finally, I want to tremendously thank (words are weak) Giovanni Di Liberto and Shihab Shamma for their
extremely warm welcome to the laboratory, their daily happiness, their extraordinary supervising and for sharing
their precious knowledge with me during these scientifically very exciting 6 months. They truly allowed me to build
all these projects and collaborations that will be following me during all my Ph.D.
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