The music of silence reveals neural auditory prediction

Introduction

Music listening and enjoyment is know to be closely reated to musical expectation and prediction following events.

Therefore, according to predictive coding, music listening is thought to involve comparison of bottom-up sensory responses and top-down prediction signals

However the neural machinery associated with bottom-up and top-down processes remains unclear as it is challenging to disentangle the two

Here we aim to test whether predictive processing explains this duality by measuring endogenous processes in absence of sensory inputs with EEG

Part I: Imagined Music

Rationale and hypothesis
Rationale: The EEG signals during auditory imagery reflect endogenous processes in isolation from sensory responses
Hp1: Auditory imagery of melodies elicits robust neural responses that are synchronised to the imagined music sounds [3]

- Hp2: Imagery responses are modulated by melodic expectations

The experiment

- Melody listening and imagery experiment
- $N=21$ subjects median age: 25 years (6 female)
- 64-channel EEG
- Four monophonic piano pieces (~ 35 seconds)
- 88 trials. One piece per trial

Tactile metrong trials in random order

- Tactile metronome at marking the start of 100bpm bars (2.4s)

Analysis Procedur
a) Non

b) Note surprise according to IDyOM model [2]
emporal response functions (TRFs) describing the linear forward mapping music $\rightarrow \quad$ EEG were evaluated for each feature vector (mTRF toolbox) [3] EEG predictions were obtained for each model. We expected reduced EEG prediction correlations when the surprise values were shuffled.

Part I: Imagined Music

- Significant coupling between EEG and note onset vector in both listening and imagery ($\mathrm{p}<10^{-30}$)
- Expectation vector allow for significantly better coupling than shuffled expectations. - Classification based on note onset and expectations coupling is significantly larger than chance for both listening and imagery.
- EEG signals encode imagined notes and their melodic expectation.

Part II: Music Silence

Hypothesis

According to PP, auditory neural responses correspond to the subtraction between sensory responses and prediction signals (S-P).
Because of the absence of S , the neural correlates to musical imagery is -P Similarly, music silence should correspond to $-P$, leading to a robust (prediction) neural signal when a note is plausible (silent-events)


```
            | | | | | | | |ل| | | | |__ N
```


Analysis Procedure

- Silent-events were derived based on IDyOM (the next most likely note onset) Forward TRFs were derived for notes and silent-events in listening and imagery conditions separately

Part II: Music Silence

- TRF weights showed significant responses to notes and silence in both conditions - Inverted polarities emerged between the TRF for notes in the listening condition (where $S>0$) and all others (where $S=0$

Discussion

References

[1] Di Liberto GM, Pelofi C et al., eLife, 2020. 10.7554/eLife. 51784 [2] Pearce MT, PhD thesis, City University London, 2005 [3] Crosse et al., Front in Hum Neurosci, 2017
[4] Di Liberto GM, O'Sullivan JA, Lalor EC, Current Biology, 2015. 25: 2457-65.
Acknowledgements

LS Laboratoire des Systemes Perceptifs

