Introduction

- Music listening and enjoyment is know to be closely related to musical expectation and prediction following events.
- Therefore, according to predictive coding, music listening is thought to involve a comparison of **bottom-up sensory** responses and **top-down prediction** signals
- However the neural machinery associated with bottom-up and top-down processes remains unclear as it is challenging to disentangle the two
- Here we aim to test whether predictive processing explains this duality by measuring endogenous processes in absence of sensory inputs with EEG

Part I: Imagined Music

Rationale and hypothesis

- Rationale: The EEG signals during auditory imagery reflect endogenous processes in isolation from sensory responses
- Hp1: Auditory imagery of melodies elicits robust neural responses that are synchronised to the imagined music sounds [3]
- Hp2: Imagery responses are modulated by melodic expectations

The experiment

- Melody listening and imagery experiment
- N = 21 subjects median age: 25 years (6 female)
- 64-channel EEG
- Four monophonic piano pieces (~35 seconds)
- 88 trials. One piece per trial.
- 50% of listening trials, 50% of imagery trials in random order

Analysis Procedure

- Stimulus features were extracted describing: a) Note onsets
- b) Note surprise according to IDyOM model [2]
- Temporal response functions (TRFs) describing the linear forward mapping *music* \rightarrow *EEG* were evaluated for each feature vector (mTRF toolbox) [3]
- EEG predictions were obtained for each model. We expected reduced EEG prediction correlations when the surprise values were shuffled.

The music of silence reveals neural auditory prediction

Giovanni M. Di Liberto^{1,*}, Guilhem Marion^{1,*}, Shihab A. Shamma^{1,2}

¹École Normale Supérieure, Paris, France, ² University of Maryland, College Park, USA * The authors contributed equally

Horizon 2020 European Union Funding

This study was supported by the EU H2020-ICT grant 644732